Modify Locks to Baffle Burglars

While it’s often thought of as a criminal activity, there’s actually a vibrant hobby community surrounding the art of lock picking. In the same way that white hat hackers try to break into information systems to learn the ways that they can be made stronger, so do those in the locksport arena try to assess the weaknesses of various locks. For the amateur, it can be exciting (and a little unnerving) to experience the ease at which a deadbolt can be picked, and if your concern is great enough, you can go a little farther and modify your locks to make them harder to defeat.

The lock in question was sent to [bosnianbill] by [Rallock67] with a device that [Rallock67] had installed using common tools. Known as a Murphy Ball, a larger-than-normal spring was inserted into one of the pins and held in place by a ball bearing. This makes the lock almost completely immune to bumping, and also made it much more difficult for [bosnianbill], an accomplished and skilled locksmith, to pick the lock due to the amount of force the spring exerted on the cylinder. The surprising thing here was that this modification seems to be relatively easy to do by tapping out some threads and inserting a set screw to hold in the spring.

Locksport and lockpicking are a great hobby to get into. Most people start out picking small padlocks due to their simplicity and ease. It’s even possible to pick some locks with a set of bobby pins. And, if you really want to see how easy it is to defeat some locks and/or how much good the TSA does for your overall security, you’ll want to take a look at this, too.

Thanks to [TheFinn] for the tip!

Continue reading “Modify Locks to Baffle Burglars”

Making Springs At Home

[This Old Tony] teaches us how to make springs on a lathein this video done in the style of How It’s Made. Mixed in with snark, in his usual style, is a lot of useful information.

The Machinery’s Handbook certainly has all the information one would need to design the basic spring shapes, but it’s not always necessary. [Tony] points out that cheating is entirely acceptable. For example, if you need a spring that’s close to the dimensions of a standard spring, simply copy over the values from the standard spring. He explains all the terminology needed to decrypt the pages in your engineering tome of choice.

He shows the basics of winding a spring on a mandrel (or that round metal thing, if you want to use the industry term). First wind the inactive coils, then set your lathe to the desired spring pitch. Engage it as if threading, then disengage and wind the final inactive coils. A quick trip to the sander squares the ends of a standard coil spring. However, the tools can also be used to make torsion springs, or even exotic combination springs.

For a good… educational laugh, watch the whole video after the break.

Continue reading “Making Springs At Home”

Are phones with haptic feedback in our future?

Can we do away with a keypad and just squeeze our phones to check messages and dial contacts? [Sidhant Gupta] has been researching the idea of an electronically adjustable spring mechanism that might just make this possible. He calls the prototype above the SqueezeBlock. If you pick it up and give it a squeeze you can feel springs pushing back against your fingers, but it’s all a trick. Inside you’ll find one motor with a gear that converts the linear motion into a rotating force. Attached to the same axle as that gear are a motor and a rotary encoder. A microcontroller monitors that encoder to detect a user squeezing the two plates together, then drives the motor to vary the resistance. [Sidhant] outlines some possible uses that included stiffer resistence as unread email starts to pile up, or squeezing the device to its smallest size to turn the ringer volume all the way down.

We’re a little skeptical of this functionality in handhelds just because of the power consumption issue. But if that is somehow overcome we think this would make a pretty interesting phone feature… at least at first. Click through the link above for a video demonstration or get the details from the research presentation (PDF)

[Thanks Dan]