Teaching STEAM With Fidget Spinners

A huge focus of the maker revolution has been a focus on STEAM education, or rather an education in science, technology, engineering, art, and mathematics. We’ve seen innumerable kits and tools designed to introduce children to STEAM apps, ranging from electronic Lego blocks to robotics kits built around interlocking plastic bricks. These are just a passing fad, but finally, we have what looks like a winner: a STEAM education fidget spinner.

Fidget spinners have spun into our hearts like a shuriken over the last few months, and [MakerStorage]’s latest project taps into the popularity of fidget spinners to put an educational — wait for it — spin on the usual STEAM education toolkit. This is exactly what the maker revolution needs.

On board this educational fidget spinner are a few RGB LEDs and an Arduino-compatible microcontroller development board. A coin cell battery powers everything, and in an interesting advancement of fidget spinner science, [MakerStorage] seems to be using a flanged bearing with a PCB. We’re seeing the march of technology right before our eyes, people. Right now there are two versions of the educational fidget spinner, one with an Arduino Pro Micro soldered to the board, and another with an ATMega-derived custom circuit on the board along with a PCB USB connector.

Haven’t gotten enough fidget spinner news? OH BOY does Hackaday have you covered. Here’s the Internet of Fidget Spinners, a fidget spinner with an embedded WiFi microcontroller and a bunch of blinky LEDs. Those LEDs form a Persistence of Vision display. It’s amazing, astonishing, and it’s in fidget spinner format. Bored with your oscilloscope? Turn it into a fidget spinner tachometer. There’s literally nothing that can’t be applied to the world of fidget spinners.

Sony Unveils Swarm Robots for Kids

Sony recently unveiled Toio, an educational robotics toy for young programmers. We all know Sony as an electronics giant, but they do dabble in robotics from time to time. The AIBO dog family is probably their most famous creation, though there is also QRIO, a bipedal humanoid, and on the stranger side, the Rolly.

Toio consists of two small cube robots which roll around the desktop. You can control them with handheld rings, or run programs on them. The robots are charged by a base station, which also has a cartridge slot. Sony is marketing this as an ecosystem that can be expanded by buying packs which consist of accessories and a software cartridge. It looks like the cartridge is yet another proprietary memory card format. Is Sony ever going to learn?

There isn’t much hard information on Toio yet. We know it will be released in Japan on December 1st and will cost around ¥ 20,000, or about 200 USD. No word yet on a worldwide release.

The striking thing about this kit is how well the two robots know each other’s position. Tape a paper pair of pants, and they “walk” like two feet. Attach a paper linkage between them, and they turn in perfect sync, like two gears. Add some paper strips, and the two robots work together to form a gripper.  We can only guess that Sony is using cameras on the bottom of each robot to determine position — possibly with the aid of an encoded work surface — similar to Anoto paper. Whatever technology it is, here’s to hoping Sony puts out an SDK for researchers and hackers to get in on the fun with these little robots.

Continue reading “Sony Unveils Swarm Robots for Kids”

Suffer No Substitutes — The Hudspith Steam Bicycle Is One-Of-A-Kind

In a bit of punky, steam-based tinkering, Brittish engineer [Geoff Hudspith]’s obsession for steam and passion for cycles fused into the Hudspith Steam Bicycle.

Built and improved over the past thirty years, the custom steam engine uses a petrol and kerosene mix for fuel, reaching a top speed of 32km/h and has a range of 16km on one tank of water. While in motion, the boiler is counter-balanced by the water tank on the rear as well as the flywheel, water pump, and the other components. However, [Hudspith] says he doesn’t have an easy go of it carrying the bike up the flight of stairs to his flat — as you can imagine. A steam whistle was fitted to the bike after insistence from others — and perhaps for safety’s sake as well, since it does take a bit of distance to stop the bike.

Many people have offered large sums for it — and at least one house in exchange for the bike — but [Hudspith] has held on to this one-of-a-kind steam-machine. A little more about the development of the bicycle can be read here! A video of the bike in action is waiting after the break.

Continue reading “Suffer No Substitutes — The Hudspith Steam Bicycle Is One-Of-A-Kind”

The Trouble with Old Model Steam Engines

Model steam engines have intrigued hackers and makers for over 100 years. Many of us have seen old steam engine models up for sale at garage sales and various internet auction sites. The problem with these engines is the fact that many of them were sold as rough casting kits. This means the quality of the model is only as good as the original owner’s machining and fabrication skills.

[Keith Appleton] is something of a steam engine expert. In this pair of videos, he takes us through troubleshooting two engines. Keith goes on to show some of the common failures he’s found while working on these wonderous little machines.

First off is the paint. If you find nuts, bolts and random parts painted in different colors, the engine is probably bad. It sounds strange, but [Keith] has found this to be a rule over his years of working with these engines.

Another problem is rattles. [Keith] found one of these engines rattled terribly. The culprit was the crankshaft. Not only was it the wrong size, but it was built wrong. These engines use built up crankshafts, rather than shafts machined from a single piece of metal. This engine’s crankshaft was threaded into the crank webs rather than pinned. Whoever built it tried to re-engineer the design of the crankshaft, and failed miserably.

You can check [Keith’s] videos out after the break. Want more displacement? We’ve covered the simplest steam engine, and an insanely detailed steampunk battleship, which of course is powered by steam.

Continue reading “The Trouble with Old Model Steam Engines”

Count Your Zombies! A Left4Dead 2 Stat Tracker

Sure, you’re getting further and further into the game and finishing missions, but the true progress for a zombie shooter is how many zombies you’ve killed, right? [Evan Juras] agreed, so he set off to build a hardware stat tracker for Left4Dead 2!

Left4Dead 2 tracks a bunch of stats and at the end of each level, those stats are updated on your Steam page. [Evan] used a Python script running on a Raspberry Pi to connect to the internet and grab four different stats from your Steam profile. Those stats are displayed on an RGB 16×2 display. To house the project, a case for it was designed and [Evan] had it 3D printed. There are two buttons on the case: one to update the stats and another to cycle through them. If no buttons are pressed then the display cycles through the stats every minute and updates the stats every 24 hours.

The video below shows a summary of the build process and describes the hardware and software used. [Evan] has plans for tracking stats from other games through Steam and his python code is available on Github. Python is becoming the go-to tool for interacting with video game bots and now, stats — see this list of Pokemon Go bots. Also, check out this feature about running MicroPython on an ESP8266 if you wanted to build something similar to this without the Raspberry Pi.

Continue reading “Count Your Zombies! A Left4Dead 2 Stat Tracker”

1980s Toy Robot Arm Converted To Steam And Other Explorations

We were doing our daily harvest of YouTube for fresh hacks when we stumbled on a video that eventually led us to this conversion of a 1980s Armatron robot to steam power.

The video in question was of [The 8-bit Guy] doing a small restoration of a 1984 Radio Shack Armatron toy. Expecting a mess of wiring we were absolutely surprised to discover that the internals of the arm were all mechanical with only a single electric motor. Perhaps the motors were more expensive back then?

The resemblance is uncanny.
The resemblance is uncanny.

The arm is driven by a Sarlacc Pit of planetary gears. These in turn are driven by a clever synchronized transmission. It’s very, very cool. We, admittedly, fell down the google rabbit hole. There are some great pictures of the internals here. Whoever designed this was very clever.

The robot arm can do full 360 rotations at every joint that supports it without slip rings. The copper shafts were also interesting. It’s a sort of history lesson on the prices of metal and components at the time.

Regardless, the single motor drive was what attracted [crabfu], ten entire years ago, to attach a steam engine to the device. A quick cut through the side of the case, a tiny chain drive, and a Jensen steam engine was all it took to get the toy converted over. Potato quality video after the break.

Continue reading “1980s Toy Robot Arm Converted To Steam And Other Explorations”

Hacklet 106 – Robots That Teach

One of the best ways to teach electronics and programming is with hands-on learning. Get the concepts off the computer screen and out into the real world. Students of all ages have been learning with robots for decades. Many older Hackaday readers will remember the turtle robots. These little ‘bots would drive around drawing shapes created in the logo programming language. This week’s Hacklet is all about the next generation of robots that teach electronics, mechanics, programming, and of course, hacking. So let’s check out some of the best educational robot projects on Hackaday.io!

edubotWe start with [Tom Van den Bon] and Edubot Controller (Benny). Buying one or two robots can get expensive. Equipping a classroom full of them can break the bank. [Tom] is hoping to make robots cheaper and more accessible with Edubot, his entry in the 2016 Hackaday prize. Edubot rides on a 3D printed frame with low-cost gear motors for a drive system. Edubot’s brain is an STM32F042, a low-cost ARM processor from ST micro. The micro and motor drives are integrated into a custom board [Tom] designed. He’s has even begun creating lesson plans so students of various ages and skill levels can participate and learn.

microbotNext up is [Joshua Elsdon] with Micro Robots for Education. Big robots can be intimidating. They can also cause some damage when hardware and software created by budding engineers doesn’t operate as expected. Tiny robots though, are much easier to wrangle. [Joshua ] may have taken tiny to an extreme with these robots. Each robot is under 2 cm square. The goal is for each one to cost less than  £10 to produce. These micro bots have big brains with their ATmega328P micro controllers. [Joshua] is currently trying to figure out a low-cost way to produce wheels for these robots.

Next we have [shamylmansoor] with 3D printed mobile robot for STEM education. Robots are expensive, and international shipping can make them even more expensive. [Shamyl] is shooting for a robot which can be made locally in Pakistan. 3D printing is the answer. The robot’s chassis can be printed on any FDM printer. Wheels,and tires are low-cost units. Motors are RC servos modified for continuous rotation. The brains of the robot is an Arduino Mega 2560, which should provide plenty of inputs for sensors. [Shamyl] even included a solderless breadboard so students can prototype circuits and sensors right on the robot’s body.

 

plobotFinally we have [Rodolfo] with Plobot. Plobot is a robot designed for the youngest hackers – those from four to seven years old. [Rodolfo] designed Plobot to be programmed with RFID cards. Each card contains a command such as move forward, turn, start, and reset. Many of the language mechanics are inspired by the Scratch programming language. Plobot’s processor is a Sanguino, running [Rodolfo’s] custom code. An ESP8266 allows Plobot to be connected to the outside world via WiFi. [Rodolfo] has even created a custom over the air update system for Plobot’s firmware. Plobot has already been tested with students, where it made a great showing. We’re hoping both [Rodolfo] and Plobot do well in the 2016 Hackaday Prize!

If you want more mind hacking goodness, check out our brand new educational robot list! Did I miss your project? Don’t be shy, just drop me a message on Hackaday.io. That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!