Putting Oculus Rift on a Robot

Many of the early applications for the much anticipated Oculus Rift VR rig have been in gaming. But it’s interesting to see some more useful applications besides gaming, before it’s commercial release sometime this year. [JoLau] at the Institute i4Ds of FHNW School of Engineering wanted to go a step beyond rendering virtual worlds. So he built the Intuitive Rift Explorer a.k.a IRE. The IRE is a moving reality system consisting of a gimbaled stereo-vision camera rig transmitting video to the Rift, and matching head movements received from the Oculus Rift. The vision platform is mounted on a Remote-controlled robot which is completely wireless.

One of the big challenges with using VR headsets is lag, causing motion sickness in some cases. He had to tackle the problem of latency – reducing the time from moving the head to getting a matching image on the headset – Oculus Rift team specified it should be less than 20ms. The other important requirement is a high frame rate, in this case 60 frames per second. [JoLau] succeeded in overcoming most of the problems, although in conclusion he does mention a couple of enhancements that he would like to add, given more time.

[JoLau] provides a detailed description of the various sub-systems that make up IRE – the Stereo camera,  audio and video transmission, media processing, servo driven gimbal for the stereo camera,  and control system code. [JoLau]’s reasoning on some of the interesting hardware choices for several components used in the project makes for interesting reading. Watch a video of the IRE in action below.

Continue reading “Putting Oculus Rift on a Robot”

Intelligent Ground Vehicle Competition 2010 Day Two Report

Culture Shock II, a robot by the Lawrence Tech team, first caught our eye due to its unique drive train. Upon further investigation we found a very well built robot with a ton of unique features.

The first thing we noticed about CultureShockII are the giant 36″ wheels. The wheel assemblies are actually unicycles modified to be driven by the geared motors on the bottom. The reason such large wheels were chosen was to keep the center of gravity well below the axle, providing a very self stabilizing robot. The robot also has two casters with a suspension system to act as dampers and stabilizers in the case of shocks and inclines. Pictured Below. Continue reading “Intelligent Ground Vehicle Competition 2010 Day Two Report”