Living High-Altitude Balloon

High-altitude balloons are used to perform experiments in “near space” at 60,000-120,000 ft. (18000-36000m). However, conditions at such altitude are not particularly friendly and balloons have to compete with ultraviolet radiation, bad weather and the troubles of long distance communication. The trick is to send up a live entity to make repairs as needed. A group of students from Stanford University and Brown University repurposed nature in their solution. Enter Bioballoon: a living high-altitude research balloon.

Instead of using inorganic materials, the Stanford-Brown International Genetically Engineered Machine (iGEM) team designed microbes that grow the components required to build various tools and structures with the hope of making sustained space research feasible. Being made of living material, Bioballoon can be grown and re-grown with the same bacteria, lowering the cost of manufacturing and improving repeatability.

Bioballoon is engineered to be modular, with different strains of bacteria satisfying different requirements. One strain of bacteria has been modified to produce hydrogen in order to inflate the balloon while the balloon itself is made of a natural Kevlar-latex mix created by other cells. Additionally, the team is using Melanin, the molecule responsible for skin color and our personal UV protection to introduce native UV resistance into the balloon’s structure. And, while the team won’t be deploying a glider, they’ve designed biological thermometers and small molecule sensors that can be grown on the balloon’s surface. They don’t have any logging functionality yet, but these cellular hacks could amalgamate as a novel scientific instrument: cheap, light and durable.

Living things too organic for your taste? Don’t worry, we’ve got some balloons that won’t grow on you.

Continue reading “Living High-Altitude Balloon”

Mediated Matter at the MIT Media Lab

Few things have managed to capture the imagination of hackers and engineers around the world the way Synthetic Biology did over the last couple of years. The promise of “applying engineering principles to designing new biological devices and systems” just seemed way too sci-fi to missed out on, and everyone jumped on the bandwagon. All of a sudden, the field which used to be restricted to traditional research organizations and startups found itself crowded with all sorts of enthusiasts, biohackers, and weirdos alike. Competitions such as the International Genetically Engineered Machine (iGEM) paved the way, and the emergence of community spaces like GenSpace and BioCurious finally made DNA experimentation accessible to anyone who dares to try. As it often happens, the Sci-Fi itself did not go untouched, and a whole new genre called “Biopunk” emerged, further fueling people’s imagination and extrapolating worlds to come.

Continue reading “Mediated Matter at the MIT Media Lab”

io9’s Build a Lifeform contest

There’s still time to enter io9’s Build a Lifeform contest. Synthetic biologists, get cracking on the design of that synthetic lifeform or BioBricks lifeform! The rules are pretty straightforward; you need to propose a lifeform design that would be scientifically viable. The BioBricks lifeform part of the contest requires that your design needs to not only be scientifically viable, you have to explain how you would create it in a lab, and you get extra points if you already have an organism. The deadline is August 25, 2008. You could win the opportunity to attend an all-expenses-paid trip to the Synthetic Biology Conference in Hong Kong or $1000 and a chance to get your creature drawn by a cool comic book artist.