Big Chemistry: Synthetic Oil

For as long as I’ve been driving, I’ve been changing oil. Longer than that, actually — before I even got my license, I did a lot of the maintenance and repair work on the family car. It seemed natural to do it back then, and it continues today, despite the fact that it would probably be cheaper overall to farm the job out. I keep doing it mainly because I like keeping in touch with what’s going on with my cars.

Oil changes require supplies, but the last few times I made the trip to BigBoxMart I came back empty-handed. I don’t know whether it’s one of the seemingly endless supply chain problems or something else, but the aisle that usually has an abundance of oil was severely understocked. And what was there was mostly synthetic oil, which I’ve never tried before.

I’ve resisted the move to synthetic motor oil because it just seemed like a gimmick to relieve me of more of my hard-earned money than necessary. But now that it seems like I might have little choice but to use synthetic oil, I thought I’d do what normally do: look into the details of synthetic oils, and share what I’ve found with all of you.

Continue reading “Big Chemistry: Synthetic Oil”

Spider Silk, Spider Silk, Made Using A Strain Of Yeast

Companies spend thousands developing a project for the market, hoping their investment will return big. Investing like this happens every day and won’t shock anyone. What may surprise you is someone who spends more than a decade and thousands of their own dollars to make an open-source version of a highly-marketable product. In this case, we’re talking about genetically modified yeast that produces spider silk. If that sounds like a lead-in to some Spiderman jokes and sci-fi references, you are correct on both accounts. [Justin Atkin] had some geneticist work under his belt when he started, so he planned to follow familiar procedures like extracting black widow DNA, isolating and copying the silk genes, and pasting them into a yeast strain. Easy peasy, right? Naturally, good science doesn’t happen overnight.

There are a few contenders for the strongest spider silk among which the golden silk orb-weaver gets the most attention, but the black widow’s webbing is nearly as strong, and [Justin] is happy to wear black widow inspired bling, whereas the golden orb-weaver looks like it crawled out of Starship Troopers. His first attempt to extract DNA starts with a vial of preserved nightmare fuel spider specimens because that is a thing you can just go online and buy. Sadly, they were candied in alcohol, and that obliterates DNA, so he moved to dried specimens from breeders, which also failed to produce results, and those were just the landmark hangups.

Continue reading “Spider Silk, Spider Silk, Made Using A Strain Of Yeast”

Nylon Fibre Artificial Muscles — Powered By Lasers!

If only we had affordable artificial muscles, we might see rapid advances in prosthetic limbs, robots, exo-skeletons, implants, and more. With cost being one of the major barriers — in addition to replicating the marvel of our musculature that many of us take for granted — a workable solution seems a way off. A team of researchers at MIT present a potential answer to these problems by showing nylon fibres can be used as synthetic muscles.

Some polymer fibre materials have the curious property of increasing in  diameter while decreasing in length when heated. Taking advantage of this, the team at MIT were able to sculpt nylon fibre and — using a number of heat sources, namely lasers — could direct it to bend in a specific direction. More complex movement requires an array of heat sources which isn’t practical — yet — but seeing a nylon fibre dance tickles the imagination.

Continue reading “Nylon Fibre Artificial Muscles — Powered By Lasers!”