Reverse Engineering An RC Spy Tank

[Michael] sells a remote control spy tank through his company, and although it’s a toy, there’s an impressive amount of electronics in this R/C tank. It’s controlled from an Android or iDevice over a WiFi connection, something that simply won’t do if you’re trying to sell this to the hacker and maker crowd. The solution to this problem is Wireshark, and with a little bit of work this spy tank can be controlled from just about anything, from a microcontroller via WiFi to a Python app.

Wireshark, everyone’s favorite network packet analysis and capture tool, was used to listen in on the communications between an iPad and the tank. This immediately showed the video stream coming from the camera in the tank, and pointing VLC to the correct port displayed the video.

The motors in the tank were a little trickier, but looking at the data stream, a few packets stood out as being responsible for controlling the motors. After a little experimentation the simple command set was decoded and a Python app whipped up.

These spy tanks are cheap – about $70 from [Michael]’s company and the other usual vendors. It’s not a particularly useful piece of hardware, but someone out there is sure to do something cool with this bit of reverse engineering.

14 Wheel Drive Vehicle Climbs Over Most Things

What do you get when you cross 7 hobby gearboxes with 14 wheels and a LiPo battery? Instead of speculating an answer, we can just check out one of [rctestflight’s] projects.

He came across those hobby gearboxes and thought it would be fun to build a 14 wheel drive contraption. Each gearbox has its own motor and is wrapped up in a nice tidy package also including the axle and wheels. All of the wheels mounted on a straight board wouldn’t be much fun so [rctestflight] used heavy duty zip ties that act as a flexible frame to connect one gearbox to the next. This allows the vehicle to bend and climb over obstacles while keeping as many wheels in contact with the ground as possible.

14 Wheel Drive

All 7 motors are powered by a single cell LiPo battery. In the video after the break it appears the vehicle can steer or that it is remotely controlled, but that is not the case. Once the battery is plugged in it just goes forward. This isn’t the first time one of [rctestflight’s] projects has been featured on Hackaday, check out his Free Falling Quadcopter Experiment.

Continue reading “14 Wheel Drive Vehicle Climbs Over Most Things”

Retrotechtacular: The (Long, Arduous) Birth of a Tank

Throughout the 1950s and early 1960s, the United States Army provided regular status reports to both its interior members and the American public through a half-hour documentary television show called The Big Picture. Since the program was produced by the government, every episode immediately entered the public domain. This particular report tells the story of the T-48 project that culminated in the 90mm M48 Patton tank.

The film opens by providing a brief history of tanks and the lessons learned about them between WWI and the Korean War. The Army sought a more robust vehicle that could handle a wide variety of climates and terrain, and so the process of information gathering began. After a series of meetings at the Pentagon in which all parties involved explored every facet, the project was approved, and a manila folder was officially designated to the project and labeled accordingly.

vesselsWe then tour the R&D facility where new tank materials and components are developed and tested. It is here that the drive gears are put through their paces on a torsion machine. Air cleaners are pitted against each other to decide which can filter out the finest dust and sand. After careful analysis, different tank shell materials are test welded together with various, well-documented electrodes, and these panels are taken outside so their welds can be directly fired upon.

Continue reading “Retrotechtacular: The (Long, Arduous) Birth of a Tank”

A think-tank solution for monitoring radioactive water storge tanks

SONY DSC

When we hear reports of radioactive water leaking into the ocean from the [Fukushima Dai-Ichi] plant in Japan we literally have to keep ourselves from grinding our teeth. Surly the world contains enough brain power to overcome these hazards. Instead of letting it gnaw at him, [Akiba] is directing his skills at one solution that could help with the issue. There are a number of storage tanks on site which hold radioactive water and are prone to leaking. After hearing that they are checked manually each day, with no automated level monitoring, he got to work. Above is the wireless non-contact tank level sensor rig he built to test out his idea.

A couple of things made this a quick project for him. First off, he just happened to have a MaxSonar MB7389 waterproof sonar sensor on hand. Think of this as a really fancy PING sensor that is water tight and can measure distance up to five meters. [Akiba’s] assumption is that the tanks have a hatch at the top into which this sensor would be positioned. The box next to it contains a Freakduino of his own design which includes hardware for wireless communications at 900 MHz. This is the same hardware he used for that wireless toilet monitor.

We really like seeing hacker solutions to environmental problems. A prime example is some of the cleanup hacks we saw around the time of the BP Gulf of Mexico oil spill.

 

Building a rather rudimentary Arduino tank bot

building-an-arduino-tankbot

The tank robot builds that we see are often quite complex. This lets them do great things, but makes the platform scary for beginners. Here’s a tank build that would be a great first project, especially if you’re more interested in the programming side of robotics than you are in the hardware itself. [Paul Bleisch] combined several different commercially available products to fabricate this Arduino-powered tank robot base.

Locomotion is provided by a double geared-motor module. This unit, the plastic wheels and treads, as well as the wooden mounting platform are all made by Tamiya. They cost very little and are already designed to work with one another. To this base he adds the Arduino and a motor shield which makes the connections dead simple. The black case on one end of the chassis holds four AA batteries which provide power for everything.

These components are all that’s really needed to start, but they provide no interactivity. So [Paul] picked up a used wireless PlayStation 2 controller. There’s a library (written by regular reader [Bill Porter]) that allows him to connect the receiver to the Arduino in order to pick up commands from the controller. He also plans to add an ultrasonic range finder to the build sometime in the future.

If you’re don’t need to do things the easy way you should consider fabricating your own tank treads.

Homemade tank joins the battle in Syria

syrian-home-made-tank

What does a hacker do when going into battle for the freedom of their country? He builds a tank from scratch, of course. It’s a little bit of a stretch calling it a tank as it lacks treads. But it’s got a high-caliber gun mounted on top and has been heavily armored.

There is room enough inside for two people. What may look low tech in this picture is a different story from the cockpit. A pair of LCD monitors display images from five different cameras. You can see the shrouds that protect three of them on the front of the vehicle with a fourth acting as the rear view. A fifth camera mounted on the gun gives the passenger a look at where he’s aiming. A PS1 controller can rotate it and we assume has a fire feature as well. Check out the demonstration video embedded after the break.

Continue reading “Homemade tank joins the battle in Syria”

Tank tread robot build aims for a smooth ride

There’s all kinds of interesting things going into this tank robot build, but that beautiful suspension system immediately caught our eye. It helps to protect the body of the robot from being shaken apart when traveling over rough surfaces. Make sure to check out the four parts of the build log which are found on the left sidebar at the post linked above.

This a Master’s thesis project and has been built from common parts. The motors for the treads are pulled from a pair of cordless drills, with some capacitors added to help combat the draw when they start up. The treads themselves are each made from a pair of bicycle chains connected with numerous PVC pipe segments. The curved section of each PVC piece goes toward the chain, leaving the edges toward the ground for great traction. The tree wheels which support the middle of the tread each have a hinge and spring to absorb the shock of running full speed into concrete sidewalk corners like we see in the video after the break.

Continue reading “Tank tread robot build aims for a smooth ride”