Volt teardown shows more than just what’s under the hood

The Chevrolet Volt is one of the top contenders in mass-market electric vehicles. Now you can get a look at the components that make up the electrical system with this Chevy Volt teardown article.

The adventure starts with a look at the 288 cell battery. It forms a T shape and takes up the space that forms the hump down the center of the interior of a vehicle. Theses have a liquid cooling system build into the enclosure to make sure things don’t get too hot during use or charging. The sights are then set on the control and monitoring hardware, and there’s a lot of it. In fact, the image above is an overview of the eighteen modules that pull the new plug-in EV technology together. If you’re brave enough to void the warranty on one of these, this should be a helpful road map to get you started.

Has anyone seen a teardown of the home charging station for one of these?

iPhone charger teardown shows astounding miniaturization.

There’s no question that Apple has their industrial design down pat; comparing a cell phone charger made by Blackberry or Motorola to the tiny 1-inch-cube Apple charger just underscores this fact. [Ken Shirriff] posted a great teardown of the Apple iPhone charger that goes through the hardware that makes this charger so impressive.

Like most cell phone chargers and power supplies these days, Apple’s charger is a switching power supply giving it a much better efficiency than a simple ‘transformer, rectifier, regulator’ linear power supply. Inside the charger, mains power is converted to DC, chopped up by a control IC, fed into a flyback transformer and converted into AC, and finally changed back into DC, and finally filtered and sent out through a USB port.

The quality of the charger is apparent; there’s really no way this small 1-inch cube could be made any smaller. In fact, if it weren’t for the microscopic 0402 SMD components, it’s doubtful this charger could be made at all.

Comparing the $30 iPhone charger of a cheap (and fake) iPhone charger, the budget charger still uses a flyback transformer but there are serious compromises of the safety and quality. The fake charger doesn’t use a power supply controller IC and replaces the four bridge diodes for a single diode to rectify the AC; a very efficient cost-cutting measure, but it does lead to a noisier power supply.

There’s also the issue of safety; on the Apple charger, there is a (relatively) huge physical separation of  ~340 VDC and your phone. With the off-brand charger, these circuits are separated by less than a millimeter – not very safe, and certainly wouldn’t be UL approved.

It’s worth pointing out that [Ken] compares a similar $7 Samsung charger favorably to the $30 Apple charger. Both are functionally identical, but Apple also has their  marketing down pat, to say the least.

Tip ‘o the hat to [George] for sending this in.

EDIT: In case a 1-inch cube wasn’t impressive enough, check out the euro version of the iPhone/iPad charger. It supplies 1A @ 5V, and isn’t much thicker than the USB port itself. Thanks [Andreas] for bringing this to our attention. If anyone wants to do a teardown of the euro version, send it in on the tip line.

Cruncher: A robotic toy dinosaur dissection

When my children got these interesting and very obnoxious toy dinosaurs last year, I could barely contain my excitement. I knew that one day, they would be on my work bench giving up their secrets. Cruncher is a fairly recent addition to the robotic animal trend that we’ve been seeing the past few years. Imbued with a personality that is a mixture of T-Rex, beagle, and loudmouth jerk, he’s every kids idea of a perfect pet.

Continue reading “Cruncher: A robotic toy dinosaur dissection”

Tearing down a failed LED bulb

todd-harrison-led-bulb

[Todd Harrison] was thinking of replacing some incandescent light bulbs in his house with LED models, so and his wife picked up a single candelabra bulb to test before they spent the cash to swap them all out. The bulb died in about a week’s time, so [Todd] got out his trusty electronic disassembly device (his hammer), sharing his post-mortem examination with us.

After taking a cursory look at it, [Todd] found that the circuit powering the bulb was not overly complicated. A small bridge rectifier along with a few caps and resistors are all that was used to power the device, making it’s failure a bit puzzling. When [Todd] wired it up to his power supply, the bulb lit up, much to his surprise. His best guess as to why it died is that the shrink wrap around the PCB managed to cause a short, though he also noticed that one of the bridge rectifier’s legs was not soldered down.

He started tooling with the light to find out more about it, but he managed to blow out a handful of LEDs in the process. All in all the LED lighting swap was a disappointment, but at least he had some fun along the way!

Continue reading if you’re interested in seeing [Todd’s] diagnosis in its entirety.

Continue reading “Tearing down a failed LED bulb”

Air Wick Odor Detect teardown

air_wick_odor_detect_teardown

[Hunter’s] wife came home from her latest extreme couponing session with a handful of free Air Wick Odor Detect air fresheners, and since they had so many of the things sitting around, he was compelled to take one apart to see what makes them tick.

The casing was secured with melted snap tabs which had to be cut, making disassembly a one-way street. Once opened, he found a trio of white label AA cells and an ARNIE COMPACT3 ISS.4 controller board, complete with an epoxy-sealed microcontroller. A similarly branded sensor board was attached to the controller, and he spotted a solenoid with a built-in nozzle for spraying air freshener as well.

The sensor board piqued his curiosity the most, and after some research he’s pretty sure that the Air Wick uses an Applied Sensor VOC air quality module to get the job done. The tiny sensor uses a special substrate containing electrodes, which measure the resistance of the sensing layer while it is heated to upwards of 400° C.  A change in resistance lets the air freshener know that it’s time to handle the odoriferous emanations floating about.

Thanks to [Hunter] for taking the time to tear the Air Wick down and letting us know what’s inside!

Hard Drive Teardown

Do you know how a modern hard drive works? If you don’t you should have a pretty good idea after watching this video. In only five minutes [Bill Hammack] manages to describe a hard drive in awesome detail without using any unnecessary scientific jargon.

The video teardown explains how the flying head “flies” how voice coil motors work and provides a basic introduction to how the binary data is stored and processed in the disk. The way the flying head maintains the miniscule distance from the plate is particularly clever. You may remember the LCD monitor teardown by the Engineer Guy, equally as detailed and interesting. The video after the break is definitely worth a watch.

Continue reading “Hard Drive Teardown”

Vocera B1000A teardown

vocera_teardown

[Gray] over at Geek Chique had a bit of an eBay mishap and was suddenly the proud owner of 16 Vocera B1000A badges. If you are not familiar, these badges are small, lightweight communications devices similar to the famous Star Trek communicator, which allow users to talk to other individuals via VOIP. He was working on getting the remaining badges up and running by reimplementing the server software, and figured that since one of the badges he purchased was not working, he might as well take it apart.

It took him awhile to get the well-made badges apart, requiring a rotary tool and some elbow grease to get the job done. Inside, he found that the device was split into two circuit boards, one being the “WiFi” board, and the other the “CPU” board. The WiFi board uses a Prism WiFi chipset, which was incredibly common at the time of construction. The CPU board sports small SRAM and flash chips as you would expect, with a Texas Instruments 5490A DSP running the show.

While it remains to be seen if tearing the device down helps [Gray] to get things up and running again, it never hurts to take a closer look to see what you are working with.