Board games over IP means telepresence chess

Correspondence chess, or playing a game of chess via email or snail mail, is well-known in the chess community. [FunGowRightNow] thought he could bring correspondence chess into the 21st century, so he built two robotic chess boards that communicate over the Internet. The end result makes for an awesome senior project for school.

Instead of a simple monitor displaying the other player’s moves (and having to manually move both black and white pieces), the positions of all the pieces are controlled via a laptop an Arduino underneath each board. An electromagnet mounted on an xy frame moves one piece at a time. To detect the positions of the pieces, an 8×8 grid of reed switches open and close with magnets put in the base of each piece. The end result is a nearly seamless chess game that can be played by two people separated by hundreds of miles.

Right now, all we have are a few videos and the descriptions of the inner machinations of the chessbots. [FunGow] promised the Internet design specs after he turns this in as his senior project on April 10th. Until then, you can enjoy a few of the videos he’s posted after the break.

via reddit

[Read more...]

Loudest telepresence robot ever

This telepresence robot will never let your Skype callers sneak up on you. [Priit] built the project, which he calls Skype Got Legs, so that his distant friends could follow him around the house during chats. But as you can hear after the break, the electric drills used to motorize the base are extremely loud.

Noise pollution aside, we like the roughness of the hack. It’s utilitarian but seems to work quite well. Commands are sent via the web using a combination of Ajax and PHP function calls. The two drills are controlled by an Arduino via a couple of automotive relays. The drills are powered by their original rechargeable battery packs. So as not to alter those batteries, [Priit] figured out a way to use synthetic wine bottle corks as a connector. They’ve been cut to size, and had tinned wires pushed through holes in them. Now, when he inserts the altered corks they press the wires against the battery contacts. [Read more...]

Simple telepresence hack lets remote user rotate this laptop

[Kris] wanted to make the telecommuting employees at his office feel a little more in control of their virtual presence in the office. He gave them a way to look around without needing to go into full-blown robotics. This laptop stand has a Lazy Susan connected to a servo motor to give the user control of where the computer is pointed.

We’ve certainly seen our share of really complicated surrogate builds like this balancing robot. There have been simpler options too, such as this smartphone-carrying motorized base. But when you get right down to it, the ability to pan the camera is probably good enough for most situations. [Kris'] solution can be built in an afternoon, using simple materials. The box is made out of MDF with a base for the laptop connected by the ball-bearing hardware that supports the weight and makes sure the servo is able spin it freely. It is driven by an Arduino which connects to the computer via USB; making it easy to control remotely. Check out a quick clip of the laptop going round and round after the break.

[Read more...]

Small tabletop telepresence robot

iphone_tabletop_telepresence

When [Peter] saw the Sparkfun Magician robot chassis in a recent new product post, he knew instantly that he had to have one for a telepresence project that had been kicking around in his head for a while.

Onto the robot chassis, he added an Arduino to provide the brains of the bot, an Adafruit motor shield for controlling the wheels, and a Pololu Wixel for wireless communications. An iPhone is mounted on the top of the robot, which communicates with his laptop using Apple’s Facetime app. The robot is controlled from his laptop as well using the Wixel, which enables him to direct the Magician chassis as if it was attached via USB.

While he thinks the robot is pretty neat and that it works well, [Peter] already has improvements in mind. The robot chassis is a bit weak on anything but smooth surfaces, so a new set of motors and wheels are likely the first changes he’ll make. He wants to add a servo-based aiming mechanism for the phone’s camera, as well as some sensors to prevent the bot from taking a nosedive off his table.

iPhone aside, this is probably one of the cheaper mobile telepresence setups we’ve seen, so we can’t wait to hear how the improvements work out, and how much they add to the robot’s cost.

Amazing 3d telepresence system

encumberance_free_telepresence_kinect

It looks like the world of Kinect hacks is about to get a bit more interesting.

While many of the Kinect-based projects we see use one or two units, this 3D telepresence system developed by UNC Chapel Hill student [Andrew Maimone] under the guidance of [Henry Fuchs] has them all beat.

The setup uses up to four Kinect sensors in a single endpoint, capturing images from various angles before they are processed using GPU-accelerated filters. The video captured by the cameras is processed in a series of steps, filling holes and adjusting colors to create a mesh image. Once the video streams have been processed, they are overlaid with one another to form a complete 3D image.

The result is an awesome real-time 3D rendering of the subject and surrounding room that reminds us of this papercraft costume. The 3D video can be viewed at a remote station which uses a Kinect sensor to track your eye movements, altering the video feed’s perspective accordingly. The telepresence system also offers the ability to add in non-existent objects, making it a great tool for remote technology demonstrations and the like.

Check out the video below to see a thorough walkthrough of this 3D telepresence system.

[Read more...]

Your robot stand-in has arrived

Meet TIPI, the Telepresence Interface by Pendulum Inversion. TIPI is something of a surrogate, giving physical presence to telecommuters by balancing an LCD screen and camera atop its six foot frame. The user has full control of the robot’s movement, with their own camera image shown on the display so that others interacting with the bot will with whom they are conversing.

A pair of 12.5″ wheels connec to DC motors via a gear box with a 37:1 ratio. These specs are necessary to recover from a sudden 20 degree loss of equilibrium, quite impressive for a bot of this stature. An Orangutan SVP board monitors a two-axis accelerometer and a gyroscope for accurate positioning data. This board automatically keeps balance, while taking user commands from a second control, a Beagle Board. The Beagle Board handles the communications, including sending and receiving the video signals, and delivering incoming position control data to the Orangutan. Separating the two systems guards against a screen-shattering fall by making sure the hardware likely to face slow-down or lockup is physically separate from that responsible for balance.

Check out the video clip after the brake to see some balancing goodness. It shouldn’t be hard to build your own version for much less than the $15k price tag enjoyed by some commercial versions.

[Read more...]

Wireless animatronic hand control

animatronic_hand

[Easton] was looking to enter his local science fair and needed a project that would wow the judges. After considering it for a bit, he decided that an animatronic hand would be a sure winner. Many animatronic projects we have seen are connected to a computer for control purposes, but his is a bit different.

[Easton] wanted to be able to control the hand in real time with his own movements, so he sewed some flex sensors onto a glove and wired them up to a custom Arduino shield he built. The Arduino is also connected to an XBee radio, allowing it to interface with his animatronic hand wirelessly.

He built the hand after studying anatomical drawings to better understand where finger joints were located and how they moved. He cut up pieces of flexible wire tubing to build the fingers, reinforcing them with Lego bricks. He ran fishing wire from the finger tips to five independent servos to provide the hand’s motion. Another Arduino with an XBee shield was used to control the hand and receive wireless signals from the glove.

Check out the video below to see why this project won [Easton] first place in the science fair.

[Read more...]