Hackaday Prize Entry: A 3D Mapping Drone

Quadcopters show a world of promise, and not just in the mediums of advertising and flying Phantoms over very large crowds. They can also be used for useful things, and [Sagar]’s entry for The Hackaday Prize does just that. He’s developing a 3D mapping drone for farmers, miners, students, and anyone else who would like high-resolution 3D maps of their local terrain.

Most high-end mapping and photography work done with quadcopters these days uses heavy DSLRs to record the images that are brought back to the base station to be stitched into a 3D image. While this works, those GoPros are getting really, really good these days, and with 4k resolution, too. [Sagar] is mounting one of these to a custom quad and flying around an area to get images of an area from every angle.

To stitch the images together [Sagar] will be using the Pix4D mapping software, an impressive bit of software that will convert a multitude of still images to a 3D scene. It’s an expensive piece of software – $8500 for a perpetual license, but the software can be rented for $350/month until a FOSS alternative can be developed.


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: An Electric Vehicle From Recycled Parts

In the future, just about everyone will be driving an electric car. We’re seeing the beginnings of this, and that means electrics and hybrids are showing up in junk yards. What does that mean? Tons of big batteries and powerful motors to build an electric vehicle from recycled parts.

A few years ago, someone exceptionally smart did the math on the environmental friendliness of different makes of vehicles from cradle to grave. The most environmentally friendly car to buy wasn’t a Prius, Leaf, or Tesla, but a used car; an old Civic or Rabbit. The logic makes sense – after two or three hundred thousand miles under its timing belt, the Civic or Rabbit has already paid the cost of forging the body and refining the plastic. Obviously, then, the most environmentally friendly car would be reusing the batteries and motor out of a newer hybrid.

For his Hackaday Prize build, [mauswerkz] is taking a 2001 BMW 330ci coupe and replacing the motor and transmission with some salvaged EV equipment. In this case, it’s the transmission and inverter from a Lexus GS450h and the batteries from a Chevy Volt ‘Extended Range’. Where the magical junkyard [mauswerkz] is pulling this equipment out of is anyone’s guess, but he did it. Maybe you can too.

So far, [mauswerkz] has the charger out of the Chevy Volt hooked up to the inverter and transmission from the Lexus and is making stuff turn. It’s only running at 200V instead of the final voltage of 650, but it’s enough for a proof of concept. Now it’s just a matter of stuffing everything inside the BMW.

Of course going to a junk yard isn’t the only way to get an EV. The more enterprising builder might want to build their own EV completely from scratch, starting with a block of foam. Yes, it even looks better than the BMW.


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: Telling Dad The Stove Is Off

A month ago, Hackaday landed at the NYC TechCrunch Disrupt, a bastion of people up all night on MacBooks and immense amounts of caffeine and vitamin B12. For 20 hours, everyone was typing away trying to build the next great service that would be bought by Google or Amazon or Facebook. Tucked away in one small corner of the room was the Hackaday crew, giving out dev boards, components, and advice to the few dozen hardware hackers at Disrupt. [David], one of these Hackaday enthusiasts won the Twilio Sponsorship Prize at Disrupt, and now it’s a Hackaday Prize entry.

[David]’s dad has a little bit of paranoia of accidentally leaving the stove on. This usually manifests itself a few minutes after leaving the house, which means turning the car around just to make sure the stove was off. At the TechCrunch hackathon, [David] built a small IoT device to automatically read the temperature of the stove, send that off to the Internet, and finally as an SMS via Twilio.

The hardware [David] is using is extremely minimal – a thermopile, a gas sensor, a WiFi module, and a microcontroller. There’s a lot of iterations in this project, with [David] looking at everything from TI MSP430s to Teensys to Arduinos to ESP8266 modules. Still, rough prototype thrown together in 20 hours is all you need to win the Twilio prize at Disrupt, and that’s more than enough for a very good Hackaday Prize entry.


The 2015 Hackaday Prize is sponsored by:

The Hackaday Prize: An Ultra Low Cost 3D Printer Controller

This isn’t a Hackaday Prize entry that will change the world, but that doesn’t mean there’s not a place for it. [vdirienzo] is building an ultra low-cost 3D printer controller for 3D printers and other CNC machine. It’s not going to change the world, but it is a rather interesting little device.

This printer controller is very minimal, with a single-sided circuit board with just enough parts and components to make this board useful. The stepper motor drivers are from Pololu, and most of the other components are stuff you could pull out of a reasonably stocked junk drawer. The microcontroller is rather interesting; it’s an Arduino Nano. Instead of the ATMega644 and ‘Mega1280 microcontrollers found on other 8-bit printer controller boards, [vdirienzo] slimmed down the Teacup firmware to fit on the ATMega328 in the Arduino Nano.

The SinapTec is not by any means the first effort to create an ultra low-cost controller board for a 3D printer that can be assembled at home. The RepRap Gen 7 electronics can be manufactured on a RepRap or small CNC mill. There’s not much to these boards – just a small, single-sided board. If you want a small, simple, and cheap controller board for a 3D printer, this is all you need.

While a cheap 3D printer controller board doesn’t really fit with the ‘change the world’ theme of The Hackaday Prize, that doesn’t mean there’s still not a place in the contest for [vdirienzo]’s entry; we have a Best Product category, with a $100k prize and a six month residency in the Hackaday Design Lab. If that’s not enough reason to build something cool – even if it won’t change the world – we don’t know what is.


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: The Chocometer

Diabetes affects almost 400 million people worldwide, and complications due to diabetes – blindness, cardiovascular disease, and kidney problems – can be reduced by regular monitoring of blood glucose. The usual way of measuring blood glucose is with a pin prick of blood and a small test strip that costs about $0.30. That’s a lot of test strips and blood used by 400 million diabetics every day. Wouldn’t it be better if there was a less invasive way of measuring blood glucose?

[marcelclaro]’s project for The Hackaday Prize aims to do just that. Instead of measuring blood directly, his project will measure blood glucose by shining light through a finger or an earlobe. Using light to detect blood glucose is something that has been studied in the lab, but so far, there aren’t any products on the market that use this technique.

There are two major problems [marcel] needs to overcome to turn this project into reality. The first is simply raw data for calibration. For [marcel], this is easy; he has Type 1 diabetes, and takes four glucose measurements a day. Patient heal thyself, or something.

The second problem is getting a photosensor that’s sensitive enough. By using an InGaAs PIN diode, a current-controlled oscillator, and a digital counter, [marcel] should have a sensor that’s good enough, with electronics that are cheap enough, to create some tech that is truly game changing for a few hundred million people around the world.


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: Arduino MPPT Controller

Imagine you’re building a small solar installation. The naive solution would be grabbing a solar panel from Horror Freight, getting a car battery and AC inverter, and hoping everything works. This is the dumb solution. To get the most out of a solar you need to match the voltage of the solar cell to the voltage of the battery. How do you do that? With [Debasish]’s entry for The Hackaday Prize, an Arduino MPPT Solar Charge Controller.

This Maximum Power Point Tracker uses a buck converter to step down the voltage from the solar cell to the voltage of the battery. It’s extremely efficient and every proper solar installation will need a charge controller that does something similar.

For his MPPT, [Debasish] is using an Arduino Nano for all the math, a DC to DC buck converter, and a few MOSFETs. Extremely simple, but [Debasish] is connecting the entire controller to the Internet with an ESP8266 module. It’s a great example of building something for much less than it would cost to buy the same thing, and a great example for something that has a chance at making the world a little better.

 


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: Biopotential Signal Library

With prosthetics, EEG, and all the other builds focused on the body and medicine for this year’s Hackaday Prize, it might be a good idea to take a look at what it takes to measure the tiny electrical signals that come from the human body. Measuring brain waves or heartbeats indoors is hard; AC power frequencies easily couple to the high impedance inputs for these measurements, and the signals themselves are very, very weak. For his entry to The Hackaday Prize, [Paul Stoffregen] is building the tools to make EEG, ECG, and EMG measurements easy with cheap tools.

If the name [Stoffregen] sounds familiar, it’s because he’s the guy behind the Teensy family of microcontroller boards and several dozen extremely popular libraries for everything from displays to real time clocks. The biopotential signal library continues in [Paul]’s tradition of building very cool stuff with just code.

The hardware used in this project is TI’s ADS1294, a 24-bit ADC with either 4 or 8 channels. This chip is marketed as a medical analog front end with a little bit of ECG thrown in for good measure. [Paul] is only using the ADS1294 initially; more analog chips can be added later. It’s a great project in its own right, and when you include the potential applications of this library – everything from prosthetics to body sensors – it makes for an awesome Hackaday Prize entry.


The 2015 Hackaday Prize is sponsored by: