Preorder TI’s ARM Cortex-M4 Launchpad for $5 delivered

Texas Instruments just open preorders for the new Stellaris LaunchPad. The boards won’t ship until the end of September, but if you don’t mind the wait you can get one for $4.99 including delivery (we’d wager non-U.S. addresses have to pay for delivery, but leave a comment if you know for sure several readers have reported that international shipping is free).

We routinely pay more in shipping for parts orders so we already jumped at the opportunity and put in our own order. Earlier in the month we heard the first murmurs about the device. We’re glad to see they hit the $4.99 target price, but the TI website mentions that this is a promotional price that will be available for a limited time only. The board boasts an ARM Cortex-M4 processor, the Stellaris LM4F120H5QR. It includes 256 KB of flash memory, 32 KB of SRAM, and more peripherals than you can shake a stick at. To get you up and running quickly they’ve included two user buttons and an RGB LED. As with the 16-bit Launchpad, the board acts as its own programmer. It has a microUSB jack, but they’ve included a micro B to USB A cable in the kit to make sure you don’t need to also put in a cable order.

We’ll give a follow-up post once we finally get our hands on the board. We hope this will be easy to get working with a Linux box!

[Thanks Chris]

TI’s inexpensive Piccolo and Stellaris dev boards

Texas Instruments is trying to take the success it had with the LaunchPad and apply it to other chip architectures. The board seen above is their new C2000 Piccolo LaunchPad. It’s a development board for the F28027 chip. This 32-bit offering is a part we know nothing about. A first look shows a clock speed between 40 and 60 MHz, 64k of Flash memory, and a JTAG programming interface. It sounds like an unrestricted copy of Code Composer Studio is also available to use as the development environment. At $17 won’t break the bank, but we also don’t feel that welling of excitement to get in on one of these units.

What does get us excited is the Stellaris LaunchPad offering. It’s not available yet (which always makes us want it more), but you can enter a drawing to get a free one when they are released. Be warned, with only 25 up for grabs the odds are against you. There are no details, other than a target price of $4.99 for the ARM development board. We’ve had a lot of fun with the STM32 ARM board, and this might be a new adventure to undertake.

[Thanks Máté]

Automated turret gives you the upper hand in office warfare

TI-office-turret

When your co-workers get on your nerves, the mature recourse is to be the bigger person and simply ignore the obnoxious individual. A team of engineers from TI show us a slightly alternative means of dealing with office mates which is not quite as mature, though far more entertaining.

The office toy cum mechanized weapons system relies on a TI MSP430 LaunchPad, coupled with a custom Turret430 breakout board. The former is the brains of the operation, while the latter houses motor drivers for the motorized turret. The system can be steered throughout its 300 degree range of rotation using an attached joystick, but in the interest of catching their target by surprise, they added an automated mode as well. The automated targeting system uses an attached webcam to pick out victims by the color of their clothing, which seems to work pretty well.

To see the system in action, check out the video embedded below.

[Read more...]

Energia brings Arduino IDE to the TI Launchpad

The Arduino IDE is an abstraction layer for the AVR chip which the board is based around. So it’s no surprise that it is now possible to use the Arduino IDE with the TI Launchpad board. This makes it dead simple for beginners to play around with the inexpensive and low-power MSP430 platform. This is all thanks to a lot of hard work on part of the Energia developers.

The project branches from Arduino so the look, feel, and function are all about the same. Most notably, the color scheme has migrated to red to match the board color of the Launchpad. You can configure the hardware the same way by selecting a COM port and target board. Almost everything is already working, but you should check the known issues page so that you don’t try to use a function that hasn’t been ported. Right now the list includes the random and random seed functions, as well as tone, notone, and micros. There is also an issue with analogWrite; it will only produce half the requested frequency and duty cycle can only be set from 0-50%. Still this is a great development if you’re most comfortable working from this IDE.

TI Chronos watch monitor your sleeping infant

[Bill] wants a little piece of mind when his infant is sleeping in the other room. For him, the audio-only baby monitor could use some improvement. His proof-of-concept is that blue patch Velcroed on the swaddled infant. It monitors movement, orientation, and temperature and alerts you when something’s amiss.

Inside the pouch you’ll find a TI Chronos eZ430 wristwatch with the band removed. It’s a nice hardware choice because it includes an accelerometer, temperature sensor, and RF link to a USB dongle. [Bill's] code sends a data packet to the PC about once a second. The PC watches to make sure there’s slight motion, indicating the baby is breathing. This part doesn’t work all that well as the accelerometer doesn’t pick up tiny movements all too well, but it does have potential. In the video after the break you can see the functions which make sure the baby doesn’t roll onto its belly, and that she’s not too cold do work extremely well.

We wonder if the accelerometer would pick up more motion if the watch was hung from a string inside of a small enclosure. This way it would swing back and forth with small movements. But perhaps that would make the whole thing too bulky?

[Read more...]

Fifa looks at electronic augmentation

The [Fédération Internationale de Football Association] is joining the growing list of professional sports that is adopting technological means in an attempt to help the human referees. After a botched call in 2010 the organization called for a system that would work day or night, with 100% accuracy and the ability to report to the Refs in less than 1 second. The applicants have been weeded out and it comes down to two systems, both of which use a piece of personal hardware we’re quite familiar with. [Fe80], who sent in the tip, recognized the TI Chronos eZ430 watch in the image above.

The two systems both use the watch as an interface, but work very differently. The first, called GoalRef, uses a sensor suspended inside the ball. This detects a magnetic field made up by the goal posts. We’d guess it’s an inductance sensor that is triggered when it passes a coil in the goal posts (we didn’t find much in the way of technical info so please do your own speculation in the comments). The second system is very familiar. It’s the Hawkeye camera system used by the APT (Tennis) in all the major tournaments.

Ti Chronos watch controls Raspberry Pi

[Mike Field] was working on interfacing his TI Chronos eZ430 watch with the Raspberry Pi. As things were going pretty well, he took a side-trip from his intended hack and implemented watch-based control for an RPi audio player.

It really comes as no surprise that this is possible, and even easy. After all, the RPi board has native USB capability for hosting the watch‘s RF dongle, and it’s running Linux which we know already works well with the Chronos platform. But we still love the thought of having automation controls strapped to our wrist!

mpg321 is the audio playback program used for this hack. It plays MP3 files using ALSA for sound, which does have a few hiccups on the RPi. [Mike] found workarounds and included them in the C program he uses to gather everything into one nice code package. Control depends on keypresses sent from the watch (meant for use with PowerPoint) which are translated by his code and pushed to the audio/mp3 programs.

Follow

Get every new post delivered to your Inbox.

Join 96,534 other followers