Weaponizing Elementary Science Experiments

[austiwawa] was playing around with one of those simple linear motors people build as friendly little science experiments. There’s an AA battery in the middle of a set of magnets. When you put it inside of a spring it zips around inside until you run out of spring or magic pixies in the battery.

Of course, the natural question arose, “How do I make it go fast!? Like fast!” After making explosion and woosh noises for a bit (like any good hacker would) he settled down and asked a more specific question. If I made the coil the barrel of an air gun, and then shot the battery out… would it go faster?

So, he built an air cannon. It took some ingenuity and duct tape, but he managed to line the barrel with a copper coil. After that he built an experimental set-up, because making something dangerous is only okay if it’s science. That’s the difference between sensible adults and children.

He shot three “dead” rounds through the cannon, and got a baseline result. These dead rounds were made so by placing the magnets at the improper polarity to forego the motion-boosting properties. Then he shot three live ones through. It went measurably faster! Neat!

What’s the silliest thing you’ve ever seen properly characterized? Let us know in the comments below.

Continue reading “Weaponizing Elementary Science Experiments”

Train Time Ticker Will Save Your Morning Commute

The fatal combination of not being a early riser and commuting to work using public transit can easily result in missed buses or trains. Frustrated with missing train after train while fumbling with a complicated transit schedule app, [Fergal Carroll] created a Train Time Ticker to help his morning routine run right on time.

A Particle Photon hooked up to a 2.2″ TFT screen — both mounted on a breadboard with a button — fit the purpose tidily. Weekday mornings, the Ticker pulls — from a server he set up — the departure times for the specific station and platform along [Carroll]’s commute every three minutes; at all other times, the Ticker can be manually refreshed for any impending trips.

Continue reading “Train Time Ticker Will Save Your Morning Commute”

Electric Train Demonstrator

If you ever want to pique a kid’s interest in technology, it is best to bring out something simple, yet cool. There was a time that showing a kid how a crystal radio could pull in a radio station from all the way across town fit the bill. Now, that’s a yawner as the kid probably carries a high-tech cell phone with a formidable radio already. Your latest FPGA project is probably too complicated to grasp, and your Arduino capacitance meter is–no offense–too boring to meet the cool factor criterion.

There’s an old school project usually called an “electromagnetic train” that works well (Ohio State has a good write up about it as a PDF file). You coil some bare copper wire around a tubular form to make a tunnel. Then a AAA battery with some magnets make the train. When you put the train in the tunnel, the magnetic forces propel the train through the tunnel. Well, either that or it shoots it out. If that happens, turn the train around and try again. There’s a few of these in Internet videos and you can see one of them (from [BeardedScienceGuy]) below.

Continue reading “Electric Train Demonstrator”

Retrotechtacular: Railroads In The Jet Age

The front of the Soviet jet train on a monument in Tver, Russia. By Eskimozzz [PD], via Wikimedia Commons.
The front of the Soviet jet train on a monument in Tver, Russia. By Eskimozzz [PD], via Wikimedia Commons.
It started with one of those odd links that pop up from time to time on Hacker News: “The strange and now sadly abandoned Soviet Jet Train from the 1970s“. Pictures of a dilapidated railcar with a pair of jet engines in nacelles above its cab, forlorn in a rusty siding in the Russian winter. Reading a little further on the subject revealed a forgotten facet of the rivalry between Russians and Americans at the height of the Cold War, and became an engrossing trawl through Wikipedia entries, rail enthusiast websites, and YouTube videos.

Continue reading “Retrotechtacular: Railroads In The Jet Age”

Hackaday Prize Entry: A Broke Hackers’ Model Train

Model railroads are the wellspring of hacker culture; the word itself comes from the MIT Tech Model Railroad Club sometime in the early 60s. These old timers at MIT had incredible resources available to them – multimillion dollar computers, vast amounts of plywood, and real metal tracks to run their trains on. [Szabolcs] doesn’t have any of this, so for his Hackaday Prize entry he’s building the Broke Hackers’ Model Train layout.

Nothing except for the most basic components in this train layout is pre-bought. The tracks are 3D printed, motor control is done through homebrew electronics, and the locomotives will be controlled through a custom protocol. It’s the apex of a hacker’s model train layout, and when you consider how much effort goes into building a normal train layout, [Szabolcs] is looking at a lot of work.

With all the work ahead of him, things haven’t exactly gone smoothly for [Szabolcs]. To print off all the parts for this project, he bought a Makibox, one of the biggest failures in the world of crowdfunded 3D printers ever. The company doesn’t exist anymore, so [Szabolcs] shelled out the cash for an i3 clone. The new printer works great and plastic parts are coming out. A little hiccup, but a great example of what it takes to put a project together for The Hackaday Prize.


The 2015 Hackaday Prize is sponsored by:

LEDs Strips Tell You the Trains Aren’t Running

[James] is a frequent user of the London Underground, a subway system that is not immune to breakdowns and delays. He wanted a way to easily tell if any of the trains were being disrupted, and thanks to some LEDs, he now has that information available at a glance without having to check a webpage first.

Inspired by the Blinky Tape project at FT Engineering, [James] thought he could use the same strip of addressable LEDs to display information about the tube. A Raspberry Pi B+ gathers data from the London Underground’s TfL API and does a few calculations on the data. If there is a delay, the LEDs in the corresponding section of the strip will pulse, alerting the user to a problem with just a passing glance.

The project is one of many that displays data about the conditions you’ll find when you step outside the house, without having to look at a computer or smartphone. We recently featured an artistic lamp which displays weather forecasts for 12 hours into the future, and there was an umbrella stand which did the same thing. A lot is possible with LEDs and a good API!

Continue reading “LEDs Strips Tell You the Trains Aren’t Running”

LEDs Turn This Paper Map into a Tram Tracker

Public transit can be a wonderful thing. It can also be annoying if the trains are running behind schedule. These days, many public transit systems are connected to the Internet. This means you can check if your train will be on time at any moment using a computer or smart phone. [Christoph] wanted to take this concept one step further for the Devlol hackerspace is Linz, Austria, so he built himself an electronic tracking system (Google translate).

[Christoph] started with a printed paper map of the train system. This was placed inside what began as an ordinary picture frame. Then, [Christoph] strung together a series of BulletPixel2 LEDs in parallel. The BulletPixel2 LEDs are 8mm tri-color LEDs that also contain a small controller chip. This allows them to be controlled serially using just one wire. It’s similar to having an RGB LED strip, minus the actual strip. [Christoph] used 50 LEDs when all was said and done. The LEDs were mounted into the photo frame along the three main train lines; red, green, and blue. The color of the LED obviously corresponds to the color of the train line.

The train location data is pulled from the Internet using a Raspberry Pi. The information must be pulled constantly in order to keep the map accurate and up to date. The Raspberry Pi then communicates with an Arduino Uno, which is used to actually control the string of LEDs. The electronics can all be hidden behind the photo frame, out of sight. The final product is a slick “radar” for the local train system.