The High Seas Are Open Source

One of the biggest problems of owning an older boat (besides being a money pit – that is common to all boats regardless of age) is the lack of parts and equipment, and the lack of support for those parts if you can find them at all. Like most things, this is an area that can benefit greatly from some open source solutions, which the Open Boat Projects in Germany has been able to show. (Google Translate from German)

This group has solutions for equipment problems of all kinds for essentially any sized boat. At their most recent expo, many people were interested in open source solutions for situations where there is currently only an expensive proprietary option, such as support for various plotting devices. This isn’t the only part of this project, though. It includes many separate projects, like their solutions for autopilot and navigation. There are even complete hardware packages available, all fully documented.

Open source solutions for large, expensive things like this are often few and far between for a number of reasons. There are limited options for other modes of open source transportation too, as it seems like most large companies are not willing to give up their secrets easily. Communities like this, however, give us hope that people will have other options for repairing their vehicles without having to shell out too much money.

Thanks to [mip] for the tip!

Reducing The Risk Of Flying With Hydrogen Fuels

Flight shaming is the hot new thing where people who take more than a handful of trips on an airplane per year are ridiculed for the environmental impact of their travels. It’s one strategy for making flying more sustainable, but it’s simply not viable for ultimately reducing the carbon impact that the airline industries have on the environment.

Electric planes are an interesting place to look for answers. Though carbon-free long haul travel is possible, it’s not a reality for most situations in which people travel today. Current battery technology can’t get anywhere near the energy density of fossil fuels and larger batteries aren’t an option since every pound matters when designing aircraft.

Even with land travel and electric grids improving in their use of renewables and electric power, aviation tends to be difficult to power with anything other than hydrocarbons. Student engineers in the AeroDelft program in the Netherlands have created Project Phoenix to develop an aircraft powered by a liquid hydrogen fuel cell, producing a primary emission of water vapor. So it is an electric plane, but leverages the energy density of hydrocarbons to get around the battery weight problem.

While the project may seem like an enormous reach peppered with potential safety hazards, redundant safety features are used such as sensors and vents in case of a hydrogen leakage, as well as an electric battery in case of failure. Hydrogen produced three times more energy per unit than kerosene, but is six times the volume in gas form and requires cumbersome compression tanks.

Even though hydrogen fuel only produces water vapor as a byproduct, it can still cause greenhouse effects if it is released too high and creates clouds. The team is exploring storage tanks for slow release of the water vapor at more optimal altitudes. On top of that, most hydrogen is produced using steam methane reforming (SMR), creating up to 150g of greenhouse gases per kWh, and electrolysis tends to be more costly and rarely carbon neutral. Alternatives such as solar power, biofuels, and electric power are looking to make headwind as well, but the technology is still far from perfected.

While it’s difficult to predict the success of the project so early on, the idea of reducing risk in hydrogen fuels may not be limited to a handful of companies for very long.

Continue reading “Reducing The Risk Of Flying With Hydrogen Fuels”

Bicycle Transforms Mid-Ride

For those of us who were children in the late 80s and early 90s, we may have dreamed of one day owning a gigantic tractor trailer that could transform into a colossal fighting robot. Or of simply having a toy that could approximate this change from one form into another. As adults, though, we have come to realize that this is wishful thinking. That is, unless we decide to build this transforming bicycle.

What starts out as a slightly unusual-looking low rider-style bike effortlessly turns into a tall bike by means of a gas cylinder fixed to the bike’s rear triangle. The bike started out as a full suspension mountain bike, but the rear spring was removed to make room for this cylinder. The pivoting action of the rear triangle in a mountain bike is the key design element here: it allows the frame to change shape easily, in this situation when pushed by the cylinder. Adding some longer forks in the front and a coat of paint finishes the build.

This bike was entered in the Make It Move contest on Instrucables, and has gotten some pretty wide recognition so far. It’s a unique bicycle to be sure, and we’ve seen a few. From Russian offroad electric utility bicycles to bicycles that keep drivers from speeding down roads, there have been lots of interesting bike-based builds.

Continue reading “Bicycle Transforms Mid-Ride”

A Range-Extended Electric Van

The only thing limiting the range on any electric vehicle isn’t really battery technology, but cost. Customers don’t want to pay more money for an electric car or van that does essentially the same thing as one with an internal combustion engine. This in turn limits the amount of batteries manufacturers put in their cars. However, with enough money, and thus enough batteries, electric cars can get whatever range you want as [Muxsan] shows with his Nissan e-NV200 that gets over 400 miles kilometers on a single charge.

The Nissan e-NV200 is a battery electric vehicle (also available as a badge-engineered Chevrolet van in North America) with a drivetrain from the Nissan Leaf. This means that all of the components from the Leaf basically plug-and-play in this van. [Muxsan] took an extra 45 kWh of batteries and was able to splice them in to the existing battery pack, essentially tripling the capacity of the original 24 kWh pack. Some work was needed to the CAN bus as well, and the car’s firmware needed to be upgraded to reflect the new battery pack, but a relatively simple modification otherwise, all things considered.

While watching the video [Muxsan] also notes how much empty space there is all around the van, and Nissan could have easily upgraded the battery pack at any time to allow for more range. It also took the car 10 hours on a 6 kW charger to charge completely, but that’s not unreasonable for 430 miles of range. If your high voltage DC chops are up to snuff, it’s not impossible to find old Leaf batteries for other projects, too.

Continue reading “A Range-Extended Electric Van”

This Beer Keg Is A Side Car

Bikes are a great way to get around. They’re cheap compared to cars and can be faster through city traffic, and you can get some exercise at the same time. The one downside to them is that the storage capacity is often extremely limited. Your choices are various bags strapped to the bike (or yourself), a trailer, or perhaps this bicycle side car made from a beer keg.

Sidecars are traditionally the realm of motorcycles, not bicycles, but this particular bike isn’t without a few tricks. It has an electric motor to help assist the rider when pedaling. With this platform [Laura Kampf] has a lot of potential. She got to work cutting the beer keg to act as the actual side car, making a hinged door to cover the opening. From there, she fabricated a custom mount for the side car that has a custom hinge, allowing the side car to stay on the road when the bike leans for corners.

For those unfamiliar, [Laura] is a master welder with a shop located in Germany. We’ve seen some of her work here before, and she also just released a video showing off all of her projects for the last year. If you’re an aspiring welder, or just like watching a master show off her craft, be sure to check those out or go straight to the video below.

Continue reading “This Beer Keg Is A Side Car”

Social Engineering By Railways

Where do you travel every day? Are there any subtle ploys to manipulate your behavior? Would you recognize them or are they just part of the location? Social engineering sometimes gets a bad rap (or is it rep?) in the mainstream, but the public-facing edge of that sword can keep order as it does in Japanese train stations. They employ a whirlwind of psychological methods to make the stations run like clockwork.

The scope of strategies ranges from the diabolical placement of speakers emitting high-frequency tones to discourage youthful loitering to the considerate installation of blue lights to deter suicides. Not every tactic is as enlightened as suicide prevention, sometimes, just changing the grating departure buzzer to a unique tune for each station goes a long way to relieving anxiety. Who wants to stand next to an anxious traveler who is just getting more and more sweaty? Listen below the break to hear what Tokyo subway tunes sound like.

Maybe you can spot some of these tricks where you live or something similar can ease your own commute. Perhaps the nearest subway has a piano for stairs or a 3D printing cyborg.

Continue reading “Social Engineering By Railways”

GuerillaClock Could Save This City Thousands

They say necessity is the mother of invention. But if the thing you need has already been invented but is extremely expensive, another mother of invention might be budget overruns. That was the case when [klinstifen]’s local government decided to put in countdown clocks at bus stops, at a whopping $25,000 per clock. Thinking that was a little extreme, he decided to build his own with a much smaller price tag.

The project uses a Raspberry Pi Zero W as its core, and a 16×32 RGB LED matrix for a display. Some of the work is done already, since the bus system has an API that is readily available for use. The Pi receives the information about bus schedules through this API and, based on its location, is able to determine the next bus arrival time and display it on the LED matrix. With the custom 3D printed enclosure and all of the other material, the cost of each clock is only $100, more than two orders of magnitude less expensive.

Hopefully the local government takes a hint from [klinstifen] and decides to use a more sane solution. In the meantime, you might be able to build your own mass transit clock that you can use inside your own house, rather than at the train station, if you’re someone who has a hard time getting to the bus stop on time.

Continue reading “GuerillaClock Could Save This City Thousands”