Hackaday Links: March 1, 2015

The somewhat regular Hardware Developers Didactic Galactic was a few days ago in San Francisco. Here’s the video to prove it. Highlights include [James Whong] from Moooshimeter, the two-input multimeter, [Mark Garrison] from Saleae, and a half-dozen other people giving talks on how to develop hardware.

[Taylor] made a portable NES with a retron, a new-ish NES clone that somehow fits entirely in a glop top IC. The controllers sucked, but [Taylor] made a new one with touch sensors. All that was required was eight transistors. The enclosure is an Altoid tin, and everything works great.

Here’s a YouTube channel you should subscribe to: Ham College. The latest episode covers the history of radio receivers and a crystal radio demonstration. They’re also going through some of the Technical class question pool, providing the answers and justification for those answers.

[Prusa] just relaunched prusaprinters and he’s churning out new content for it. Up now is an interview with [Rick Nidata] and his awesome printed container ship.

The tip line is overflowing with ESP8266 breakout boards. Here’s the simplest one of them all. It’s a breadboard adapter with stickers on the pin headers. Turn that into a right-angle breadboard adapter, and you’ll really have something.

Here’s something that’s a bit old, but still great. [Dillon Markey], one of the stop-motion animators for Robot Chicken modified a Nintendo Power Glove for animation duties. It seems to work great, despite being so bad. Thanks [Nicholas] for the link.

[David] the Swede – a consummate remote control professional we’ve seen a few times before – just flew his tricopter in a mall so dead it has its own Wikipedia page. Awesome tricopter, awesome location, awesome video, although we have to wonder how a few really, really bright LEDs would make this video look.

Here’s an item from the tip line. [Mark] wrote in with an email, “Why do you put names in [square brackets] in the blog entries? Just curious.” The official, [Caleb]-era answer to that question is that sometimes people have bizarre names that just don’t work in text. Imagine the sentence, “[12VDC] connected the wires to the terminal” without brackets. The semi-official answer I give is, “because.”

Modular Multicopter Core Flies in Multiple Orientations

[Ioannis Kedros] claims to be rather new to the game of building multi-rotor drones. You’d never know it looking at his latest creation. Yes, we’re talking about the quadcopter seen here, but it’s the core of the machine that’s so interesting. He came up with a PCB hub that allows multiple orientations to be used with the same board. These include tri-copter, and quadcopter with different strut angles for different applications.

multicopter-hub-pcbThe silk screen of the PCB has dotted lines showing the different angles possible for one pair of motor supports. One set makes a perfect “X” for traditional quadcopter flight. Another reduces the angle between front and back struts for higher-performance quad flight, while the last set is intended for a tricopter setup.

We’d recommend taking a look at [Ioannis’] project writeup whether this particular application interests you or not. His design techniques go through all possible manner of checks before placing the PCB order. There is no substitute for this process if you want to avoid getting burnt by silly mistakes.

Continue reading “Modular Multicopter Core Flies in Multiple Orientations”

Rotor DR1 and Collaborative Development

In a post apocalyptic world ravaged by the effects of a virus, a young man searches for his father. He forms a friendship with a young woman and a delivery drone that seems oddly sentient. Together they have to fight through abandoned buildings, and past gangs of thugs, to find…

That’s the hook for Rotor DR1, a web series currently in production. Rotor DR1 isn’t a big budget movie, but an independent series created by [Chad Kapper]. [Chad] isn’t new to film or drones, his previous project was Flite Test, which has become one of the top YouTube channels for drones and radio controlled aircraft in general. With the recent sale of Flite Test to Lauren International, [Chad] has found himself with the time to move forward on a project he’s been talking about for years.

Click past the break for more information, and to check out the Rotor DR1 trailer.

Continue reading “Rotor DR1 and Collaborative Development”

X-Wing Tri-Rotor Brings Star Wars to Life

xwing

Once you realize you can make almost anything fly if you strap a big enough prop and motor to it, you really start thinking outside of the box. That’s what [Rodger] did and he’s come up with this very impressive 19lb, 5′ long X-Wing Fighter from Star Wars.

Recently [Rodger] has found new joy in making movie props come to life with the help of today’s technology. He started with Project Thunderball — a flying James Bond mannequin with a jet pack. From there he brought us the Marty McFly working hover-board, and now an X-Wing Fighter, his biggest flying machine yet.

It measures about 5 feet long, and is a tri-rotor design with three 100A ESCs, 1200W 1050KV motors, and 12″ rotors. The frame is made of PVC to conserve weight. Since it’s a tri-rotor with true vectored thrust, the X-Wing features much better yaw than quadrotors. Then only problem is it pivots around the odd prop out, meaning in this case, the X-Wing turns on its nose — instead of its tail.

Regardless, we can’t wait to see what [Rodger] tries flying next! Stick around to see the X-Wing in action.

Continue reading “X-Wing Tri-Rotor Brings Star Wars to Life”

An absurdly small tri-copter

The team behind the Femtoduino – an extraordinarily small repackaging of the Arduino – sent in a few videos from YouTuber [phineasIV], a.k.a. [Eric] that shows one of the smallest multicopters we’ve ever seen.

Because this isn’t a traditional quad or hexcopter, the control system is a little weird. Two of the motors and props are fixed along the vertical axis, while the rear prop is connected to a small servo to rotate from side to side. Still, the electronics are fairly standard for any multi rotor vehicle – a triple-axis gyro provides the stability of the vehicle coupled with MultiWii, while an amazingly small servo receiver, Bluetooth module,, Femtoduino, and a trio of brushless ESCs tie everything together.

The end result is a tri-copter that weighs about the same as the Crazyflie Nano Quadcopter, but is just a bit smaller. As impressive as it is on video (seen below), we’d love to see this tiny robotic hummingbird in person.

Continue reading “An absurdly small tri-copter”

Acrobatic tricopter inspired by the Oblivion movie trailer

tricopter

There have been a ton of commercials for the new [Tom Cruise] movie called Oblivion. One of the main points in every clip we remember seeing is the Top Gun meets Star Trek vehicle he does some tricks in. [James Cotton] loved that footage and ended up building his own RC version of the vehicle.

Three propellers give it lift, with directional control facilitated by servo motors which can pivot the motors attached to the two orange propellers. This design produces remarkably responsive controls as shown in the video after the break. That being said it’s still not immune to operator error. At the end of the clip [James] crashes it hard, stripping out the gears on the servo motors.

He has a few things in mind for the future of the device (and he’ll have plenty of time to plan while he waits for replacement servos to arrive). The aircraft should be able to carry a camera long with it. He discusses the issues involved with where the camera ends up pointing based on what the tilting motors are doing. But we figure he could always build a base that lets the camera pan and tilt separately from the chassis.

You can find a few tricopter projects around here but we’ve always like the one made of cardboard.

Continue reading “Acrobatic tricopter inspired by the Oblivion movie trailer”

The $100 tri-copter

We’ve seen lots of budget tri-copters, but $100 seems like a heck of a deal to us! Watching this video, you can see this home made tri-copter is incredibly agile and seems to handle quite well. Whats amazing is that [hallstudio] claims that it cost roughly $100. That price is really good compared to even the cheapest multi copters out there.

Much of the manufacturing cost associated with this kind of thing has been removed as the body is just cheap wood from the local hardware store. He even did an admittedly sloppy rig for his tail rotor, not that it looks like it has hurt his performance.  One cool feature is the fact that you can fold the front arms backward, allowing for the tri-copter to be shoved into a bag for easy transportation.

You can find a complete parts list on his video, but it looks like maybe his cost doesn’t figure in the cost of the radio controller. There are no build instructions, but a quick google search leads us to the rcexplorer tricopter which seems to be the template he used. There are full build details there.

 

[via Hackedgadgets]