How Many Puffs Does it Take To Kill an E-Cigarette?

Most of us have probably heard the old Tootsie Pop slogan, “How many licks does it take to get to the center of a Tootsie Pop?” [E-Smoker2014] had a similar question about his e-cigarettes. These devices are sometimes advertised with the number of puffs they are good for. [E-Smoker2014] had purchased an e-cigarette on a trip to Belgium that advertised 500 puffs. After a bit of use, he started to suspect that he wasn’t getting the advertised number of puffs in before the battery would die. Rather than just accept that the world may never know for sure, he decided to test it out himself.

There aren’t many details on this build, but you can tell what’s going on from the video below. [E-Smoke2014r] built a machine to artificially puff on an e-cigarette. The e-cigarette is hooked up to what appears to be vinyl tubing. This tubing then attaches to a T-splitter. One end of the splitter is hooked up to a DIY actuator valve that can open or close the port. The other end of the splitter is hooked up to more tubing, which in turn is attached to a plastic cylinder placed in a container of water.

To simulate breathing, the computer first opens the relief valve in the splitter. It then mechanically lowers the plastic container into the bowl of water, pushing out a bunch of air in the process. The valve closes, and the computer then raises the plastic container out of the water. This action creates suction that draws air in through the e-cigarette like a normal user would do with their lungs. The computer increases the puff count and then repeats the process, expelling any vapor out of the relief valve.

The results of the test indicated that [E-Smoker] could only get 59 puffs out of this particular e-cigarette before draining the battery. Not even close to the advertised 500 puffs. Maybe he should consider building his own e-cigarette vaporizer? Continue reading “How Many Puffs Does it Take To Kill an E-Cigarette?”

Cocktail machine minces words

For those living in a magical land of candy, with orange-faced helpers to do their bidding, the ability to taste your words is nothing new. But for the rest of us, the ability to taste what you type in cocktail form is a novelty. [Morskoiboy] took some back-of-the-envelope ideas and made them into a real device that uses syringes as keys, and facilitates the injection of twenty-six different flavorings into a baseline liquid. He figures that you can make each letter as creative as you want to, like representing different alcohols with a letter (T for tequila) or matching them to colors (R for red). Check out the video after the break to see an ‘Any Word’ cocktail being mixed.

This setup is entirely mechanical, and makes us wonder if [Morskoiboy] works in the medical equipment design industry. Each letter for the keyboard is affixed to the plunger on a syringe. When depressed, they cause the liquid in an external vessel (not seen above) to travel through tubing until it fills the proper cavities on a 15-segment display to match the letter pressed. From there the additive is flushed out by the gravity-fed base liquid into the drinking glass. We can’t imagine the time that went into designing all of the plumbing!

Continue reading “Cocktail machine minces words”

Haptic feedback joystick uses air muscles

[Ben Krasnow] is working on a force-feedback joystick. It centers around the concept of an air muscle which transfers pressure into linear motion. He cites another air muscle project as part of the inspiration in his build, but where he’s gone with it is one of the better uses for these blow-up components that we’ve seen.

Basically you have a bladder, in this case rubber tubing. A mesh surrounds it to reinforce the material and cause inflation to shorten the length of the package. In the image above there are four black air muscles that connect the base of a joystick with the outer frame that houses it. How and when each muscle is pressurized determines the type of motion the user will feel on the joystick. This is where his pressure controller comes into play. It uses a voltage-to-pressure transducer to feed a manifold, the combination of which not only makes each muscle addressable but allows him to dial in the force sent to the muscles. Check out the video after the break for his start-to-finish walk through.

Continue reading “Haptic feedback joystick uses air muscles”

Simple liquid dispenser for auto-cocktails

[Qdot] came up with a simple way to dosing out liquids to use in his Bartris project. As you can see above, flexible tubing is connected to some inverted bottles that house the liquid. A chopstick is attached to a board on one end, and via string to a servo on the other. When the servo turns it pulls the chopstick tight against the board, cutting off the flow of liquid through the tubing. This isn’t as elegant as the system the Bar2D2 uses but it’s a heck of a lot less expensive.

You can check out some of the build pictures in his Flickr pool. He’s included this concept in a project he calls Adult Mario. Watch the video after the break but the quick and dirty is that the more coins you score in Super Mario Brothers, the more beverage is rationed out into your cup. Ah, human lab rats, is there nothing they won’t do for booze?

Continue reading “Simple liquid dispenser for auto-cocktails”