Assigning new packages to Eagle PCB components

adafruit-eagle-component-creation-tut

If you’ve spent any time at all laying out your own circuit boards we’re sure you’ve run into the issue of not having the right component or package available in the standard libraries. If it’s a common part, chances are the symbol definition will be there.  But perhaps the footprint you want to use is missing? Here’s an easy to follow tutorial which demonstrates how to assign new packages to existing Eagle PCB components. It even shows the basics of how to tweak the footprint to fit your needs (like making SMD footprints easier to hand solder).

This will not teach you how to make your own custom symbols, or how to build packages from scratch. But it will let you locate the package you want to use from a different component, then copy it to your own library for use with different parts. And the techniques shown make this a quick and relatively painless process.

We certainly don’t want to start another comment quagmire like the recent PIC v. AVR discussion. But we’ve used both Kicad and Eagle rather extensively and feel that neither one has really mastered part/footprint creation in a user-friendly way. We like Kicad’s total separation of footprints from components, and it’s myriad of parameters which can be used to tweak the layout. But if you use the same components frequently, Eagle’s standard of linking parts and footprints does end up saving a lot of time. What do you think?

Learn a little assembly language for the 6502 processor

6502-assembly-tutorial

Evern wanted to write your own Atari 2600 games? This won’t get you quite that far, but it will teach you the very basics. It’s an assembly tutorial for the 6502 processor. The nice thing is that you need nothing more than your browser to participate thanks to the embedded JavaScript emulator which acts as assembler, machine, and debugger in one.

The 6502 was in a lot of early equipment. In addition to the previously mentioned Atari they can be found in the Commodore 64, Apple II, and the original NES. You can even find folks building their own computers around the chip these days (most notable to us is the Veronica project). The guide starts off slowly, providing a working program and challenging the reader to play with to code in order to alter the outcomes. It moves on to an overview of registers and instructions, operators and branching, and culminates in the creation of a simple game.

[Thanks Mathilda]

How computers work, starting with transistor gates

[Andrew Gibiansky] has just started a tutorial series called Computing with Transistors. It’s purpose is to pull back the many veiled layers between high level languages and the controlling of electrons. And fittingly this first post starts off by explaining voltage source, load, and current. Don’t be thrown by its simplicity though. [Andrew] quickly moves on to talk about switching transistors and how they are used to build gates like the OR NOR gate seen above.

If this is the least bit interesting you should also look back at the post about Nand 2 Tetris. It’s an online course that works its way through The Elements of Computing Systems text book. We’ve been following that journey ourselves, having made it through the hardware build in about a week. The assembler took about the same amount of time, and right now we’re in debugging hell trying to get the last function call and return parts of the VM translator to work right. We’ve used most of the skills needed in this journey before, but never all in one project. It really has shed a lot of light on the gaps in our knowledge, and we’re having a lot of fun at the same time!

[via Reddit]

Reading analog sensors with the Raspberry Pi

Adafruit just posted an awesome tutorial on reading analog sensors with the Raspberry Pi. It’s a great walkthrough that can be applied to your next Raspi project as well as any project where you just need one more analog input.

Earlier, the folks over at Adafruit posted a tutorial on using a MCP3008 ADC with the Raspi to directly read analog values using a Raspi. Sometimes, though, you don’t need eight analog inputs and a 12-bit ADC to get a project off the ground. Adafruit’s tutorial for reading analog values without an ADC relies on a single 1μF ceramic capacitor attached between a digital input and ground. By pulling the sensor line high for a millisecond or two, the capacitor charges at different rates depending on the value of the analog sensor.

Yes, it’s just an RC timing circuit but seeing as how the Raspi doesn’t have an analog input, we figure this tutorial could help out a few people.

[Balint] is starting a software-defined radio tutorial series

A few months ago, we saw a hack where a $20 USB TV tuner was transformed into a software-defined radio capable of reading GPS signals, listening to radio transmissions between aircraft and a control tower, and even a simple FM radio. This project is a perfect introduction to the RTL-SDR and Ham radio scene, but getting these projects up and running can be a bit overwhelming for anyone who hasn’t played around with this before. [Balint] is tackling this problem head on with a series of YouTube tutorials to get SDR noobs up and running with GNU Radio and the Realtec USB TV tuner.

To demonstrate the power of software-defined radio, [Balint] is using GNU Radio and the USB TV tuner that started it all, the Ezcap EZTV668 (conveniently back in stock at DealExtreme, but other options exist). Because software-defined radio is a touch confusing for a beginner to wrap their head around, [Balint] is beginning his tutorial series by explaining radio sources, sinks, and the GNU Radio interface.

Already, [Balint] has put up 5 tutorials and made the flowgraph files available in his gr-baz project. He’s doing a wonderful job opening up the software-defined radio scene to beginners, but he’s still looking for some feedback. If you have a suggestion on what [Balint] should cover next, leave a note in the YouTube comments and we’re sure [Balint] will get around to that eventually.

Getting started with OpenCV

[Eric Gregori] sent in an article he wrote for EETimes to introduce the concepts behind computer vision to the masses. As a nice little bonus, [Eric] included a VMware image containing Ubuntu and all the packages and examples necessary to write your own OpenCV apps.

There’s a ton of awesome stuff you can do with computer vision – from automated sentries to keep squirrels away, a kitchen that will tell you when to do the dishes, and automating blindness by mounting a laser on a face tracker, there’s a lot of unexplored territory in the area of computer vision.

Included in [Eric]‘s VM image are a motion and line detection example app, an ‘optical flow’ example, and a face detection example. There’s enough here to make a few very interesting projects, so hopefully, [Eric]‘s VM image and examples will get your next CV project up and running quickly.

Get neck-deep into ZigBee

Here’s a bulky tutorial that will round-out your understanding of ZigBee wireless communications (translated). The protocol is great for hobby electronics projects because it uses low-power short range wireless devices to build a mesh network. The guide covers both hardware and software, but also takes the time to explain what that hardware is doing in the background.

As you can see, several different renditions of an XBee module are used as examples. They pretty much all rely on a series of SparkFun breakout boards that each serve different purposes. Once you’ve acquired these modules, there’s a fair number of choices needed to configure them to play nicely with each other. We read most of the tutorial (we’ll save the rest for later enjoyment) and had no problem following along even without owning the hardware or being able to use the interface as we learned.

Whenever we cover XBee modules we always like to mention that it’s quite easy to use these for remote sensors with no additional microcontroller needed.