Dragging Teletypes Into The 21st Century

If you are of a certain age you may have worked in an office in the days before the computer revolution, and the chances are that in the corner of your office there would have been a teletype machine. Like a very chunky typewriter with a phone attached, this was an electromechanical serial terminal and modem, and machines like it would have formed the backbone of international commerce in the days before fax, and then email.

Teletypes may have disappeared from the world of trade, but there are a surprising number still in private hands. Enthusiasts collect and restore them, and radio amateurs still use digital modes based on their output. The problem facing today’s teletype owner though is that they are becoming increasingly difficult to interface to a modern computer. The serial port, itself an interface with its early history in the electromechanical world, is now an increasingly rare sight.

[Eric] has a project which addresses the teletype owner’s interfacing woes, he’s created a board with all the necessary level shifters and an Atmega32u2 microcontroller to translate the teletype’s output to USB.

In his design he’s had to solve a few problems related to such an aged interface. Teletypes have a serial output, but it’s not the TTL or RS232 we may be used to. Instead it’s a high-voltage current loop designed to operate electromagnets, so his board has to incorporate an optocoupler to safely isolate the delicate computer circuitry. And once he had the teletype’s output at a safe level he then had to translate its content, teletypes speak 5-bit ITA2 code rather than our slightly newer 7-bit ASCII.

The result though is a successful interface between teletype and computer. The former sees another teletype, while the latter sees a serial terminal. If you have a teletype and wish to try it for yourself, he’s released the source code in a GitHub repository.

Teletypes have featured a few times here at Hackaday over the years. We’ve had one as an SMS client, another that monitors a Twitter feed, and while it’s not strictly a teletype, a close examination of an Olivetti mechanical serial terminal.

DIY USB Type C

For many years, the humble serial port was one of the best ways to communicate with an embedded system. Then USB ports became more popular and serial ports started to vanish. These days, even if you’re using a serial protocol to communicate with the microcontroller, it’s often over USB. And USB provides a convenient source of 5 V too. In short, we’ve made our peace with USB.

And then they go and change it. USB type C is a small connector that is reversible and has more options for power and connectivity. However, it is yet another new interface to figure out. [Scorpia] recently posted an article about USB type C that you may find useful.

Continue reading “DIY USB Type C”

Reading an IR Thermometer the Hard Way

[Derryn Harvie] from the MakeHackVoid maker space hacked a $10 IR Thermometer and made it talk USB. Sounds easy? Read on.

He opened it up in the hope of finding, and tapping into, a serial bus. But he couldn’t find one, and the main controller was a COB blob – hidden under unmarked black epoxy. Normally this is a dead-end.  (We’ve seen some interesting approaches to decapping epoxy blobs, and even ICs with lasers.)

But [Derryn] went his own way – intercepting the data going from the micro-controller to the LCD display, and reverse engineering it using another microcontroller. He scraped off the solder mask over the tracks leading to the LCD display, and used an oscilloscope to identify the common drive lines. He then used a function generator to excite each of the LCD common lines and the segments lines to build a complete matrix identifying all the combinations that drove the segments. With all the information decoded, wires were soldered so he could hook up an Arduino, and the cut tracks repaired.

Since the LCD was a multiplexed display, the bias voltages were at four levels. Luckily, he could extract most of the LCD information by reading just eight of the segment drive lines, using up all of the analog inputs on the Arduino. Perhaps a different microcontroller with more ADC inputs would have allowed him to display more LCD functions. Well, he can always upgrade his upgrade later. If you have a similar hack to implement, then [Derryn]’s code could be useful to get started.

Thanks, [csirac2] for sending us this tip from MakeHackVoid.

USB Soldering Iron is Surprisingly Capable

We know what you’re thinking. There’s no way an 8 watt USB-powered soldering iron could be worth the $5 it commands on eBay. That’s what [BigClive] thought too, so he bought one, put the iron through a test and teardown, and changed his mind. Can he convince you too?

Right up front, [BigClive] finds that the iron is probably not suitable for some jobs. Aside its obvious unsuitability for connections that take a lot of heat, there’s the problem of leakage current when used with a wall-wart USB power supply. The business end of the iron ends up getting enough AC leak through the capacitors of the power supply to potentially damage MOSFETs and the like. Then again, if you’re handy to an AC outlet, wouldn’t you just use a Hakko? Seems like the iron is best powered by a USB battery pack, and [BigClive] was able to solder some surprisingly beefy connections that way. The teardown and analysis reveal a circuit that looks like it came right out of a [Forrest M. Mims III] book. We won’t spoil the surprise for you – just watch the video below.

While not truly cordless like this USB-rechargeable iron, we’d say that for the price, this is a pretty capable iron for certain use cases. Has anyone else tried one of these? Chime in on the comments and let us know what you think.

Continue reading “USB Soldering Iron is Surprisingly Capable”

Minions Turn Your Keyboard into a Bluetooth Keyboard

Evil geniuses usually have the help of some anonymous henchmen or other accomplices, but for the rest of us these resources are usually out of reach. [Evan], on the other hand, is on his way to a helpful army of minions that will do his bidding: he recently built a USB-powered minion that turns a regular PS/2 mouse and keyboard into a Bluetooth mouse and keyboard.

[Evan] found his minion at a McDonald’s and took out essentially everything inside of it, using the minion as a case for all of the interesting bits. First he scavenged a PS/2 port from an old motherboard. An Arduino Nano is wired to an HC-05 Bluetooth chip to translate the signals from the PS/2 peripherals into Bluetooth. The HC-05 chip is a cheaper alternative to most other Bluetooth chips at around $3 vs. $40 for more traditional ones. The programming here is worth mentioning: [Evan] wrote a non-interrupt based and non-blocking PS/2 library for the Arduino that he open sourced which is the real jewel of this project.

Once all the wiring and programming is done [Evan] can turn essentially any old keyboard and mouse into something that’ll work on any modern device. He also put an NFC tag into the minion’s head so that all he has to do to connect the keyboard and mouse is to swipe his tablet or phone past the minion.

If you’re looking for an interesting case for your next project, this McDonald’s Minion toy seems to be pretty popular. PS/2 keyboards are apparently still everywhere, too, despite their obsolescence due to USB. But there are lots of other ways to get more use out of those, too.

Continue reading “Minions Turn Your Keyboard into a Bluetooth Keyboard”

The Pi Zero Mass Storage Picture Frame

The Raspberry Pi Zero – and the not-perpetually-out-of-stock Raspberry Pi A+ – only have one USB port, but behind that port is a lot of functionality. This is an OTG USB port, and just like the USB port on your smartphone, this little plug can become any kind of USB device. Transforming the Pi into a USB gadget allows it to be a serial connection, MIDI device, audio source or sink, or a USB mass storage device.

[Francesco] was especially interested in the USB mass storage capability of the Raspberry Pi Zero and built a small project to show off its capabilities. He turned a Pi Zero into the controller for a digital picture frame, constantly displaying all the image files on a small screen.

The build started with [Andrew Mulholland]’s guide for Pi Zero OTG modes, with just a few modifications. When the Pi is plugged into a PC, it automatically becomes a 100 Megabyte USB storage device. You don’t need that much space on a digital picture frame, anyway.

While setting up a digital picture frame is easy enough, there’s still a tremendous amount of untapped potential in using the Pi Zero as a USB gadget. With enough buttons, switches, and sensors, the Pi can become a wearable MIDI device, or with the Pi camera module, an IP webcam. Neat stuff, and we can’t wait to see what the community comes up with next.

Converting A GameCube Controller To USB

The GameCube controller is a favorite among the console enthusiasts new and old, and with Nintendo’s recent release of the Smash Bros. edition of this controller, this is a controller that has been in production for a very, very long time. [Garrett] likes using the GameCube controller on his PC, but this requires either a bulky USB adapter, or an off-brand GameCube ‘style’ controller that leaves something to be desired. Instead of compromising, [Garrett] turned his GameCube controller into a native USB device with a custom PCB and a bit of programming.

First, the hardware. [Garrett] turned to the ATtiny84. This chip is the big brother of the ubiquitous 8-pin ATtiny85. The design of the circuit board is just under a square inch and includes connections for the USB differential pairs, 5V, signal, and ground coming from the controller board.

The software stack includes the micronucleus bootloader for USB firmware updates and V-USB to handle the USB protocol. There are even a few additions inspired by [Garrett]’s earlier shinewave controller mod. This controller mod turns the GameCube controller into a glowing hot mess certain to distract your competitors while playing Super Smash Bros. It’s a great mod, and since [Garrett] kept the board easily solderable, it’s something that can be easily retrofitted into any GameCube controller.