32C3: Vector Video Games

There are a few classic video games that rely on vector graphics and special monitors. Asteroids is incomplete if you’re not playing it in its original arcade format. The same goes with Tempest, Lunar Lander, and the 1983 Star Wars arcade game. Emulation of these games is possible, even with MAME, but the display – like every display you can buy today – is still rasterized. The solution to this problem is to create a vector display output for MAME that works in conjunction with adapter boards and DACs connected to a monitor.

For this year’s Chaos Computer Congress, that’s exactly what [Trammell Hudson] and [Adelle Lin] did. They’ve created an open source vector gaming system that connects MAME to XY monitors and oscilloscopes.

The build uses a custom board equipped with a Teensy 3.1 microcontroller and a 12-bit DAC to convert XY coordinates sent by MAME to vectors that can be displayed on any XY monitor. This, of course, requires a patch to MAME, which the maintainers rejected as being an, “unacceptably hacky way to achieve the intended result.” It does achieve the intended result, though: allowing dozens of vector games playable on whatever monitor supports vector graphics.

So far, [Trammell] and [Adelle] have gotten their system working on Vectrex consoles, analog oscilloscopes set to XY mode, and vectorscopes that litter every broadcast station and surplus shop. Check out [Trammell] and [Adelle]’s talk, and if you want to build the V.st vector display driver, the board is available from OSHPark.

Nerdalert: German TV Producers’ Amazing Vectorscope Animations

German weekend late-night comedy show “Neo Magazin Royale” has a bunch of super-nerds behind the screens in the production studio. This is apparently what they do when they’re (not) working: making test screens that render as multiple animations on their test equipment.

While others out there are limited to displaying cool graphics on oscilloscopes, these guys have vectorscopes and waveformer monitors. A vectorscope is like an oscilloscope in X-Y mode, but with one screen that decodes the color space and one screen for the audio (in stereo). A waveform monitor that plots out the brightness levels of a test image. Normal studio techs use these to calibrate their colors, brightness, and audio levels.

Apparently, these guys programmed a custom test screen that would: a) encode a small animation of a 20-sided die spinning around the show’s logo in the color channel b) encode the show’s logo in the left and right sound channels, and c) their production company’s logo in the screen’s brightness.

At the end of the video, the director Patrick (in the glasses) admits that they’ve spent about three months working on this project and everyone starts laughing. “And who gets anything from this? Nobody!” says the show’s host.

One way to rectify that, though. Post the source code!

A Video Vectorscope Oscilloclock

Tek 520A Oscilloclock

Back in the days of analog TV, vectorscopes were used to view video signals. [Aaron] has taken an old Tek 520A NTSC vectorscope and converted it into his newest oscilloclock.

The scope was originally designed to look at the signal provided by composite video. It draws vectors on a polar plot. By using test patterns such as color bars, you can ensure equipment is creating the correct color output. These scopes were so commonly used that many digital systems still provide a simulated vectorscope for color analysis. Vectorscopes were designed to be left on constantly, which is a good quality for a clock.

[Aaron] has a history of converting oscilloscopes into clocks, which we have featured in the past. This build is similar, using his custom control hardware to drive the display. Since analog vectorscopes are pretty much obsolete, you can find them on eBay at low prices, so these oscilloclocks could be relatively cheap to build.

In the write up, you get a teardown of the Tek 520A, showing the modifications made to build the clock. After the break, check out a video of the Tek 520A Oscilloclock.

Continue reading “A Video Vectorscope Oscilloclock”