Movie Encoded in DNA is the First Step Toward Datalogging with Living Cells

While DNA is a reasonably good storage medium, it’s not particularly fast, cheap, or convenient to read and write to.

What if living cells could simplify that by recording useful data into their own DNA for later analysis? At Harvard Medical School, scientists are working towards this goal by using CRISPR to encode and retrieve a short video in bacterial cells.

CRISPR is part of the immune system of many bacteria, and works by storing sequences of viral DNA in a specific location to identify and eliminate viral infections. As a tool for genetic engineering, it’s cheaper and has fewer drawbacks than previous techniques.

Besides generating living rickrolls and DMCA violations, what is this good for? Cheap, self-replicating sensors. [Seth Shipman], part of the team of scientists at Harvard, explains in an interview below a number of possible applications. His focus is engineering cells to act as a noninvasive data acquisition tool to study neurobiology, for example by using engineered neurons to record their developmental history.

It’s possible to see how this technique can be used more broadly and outside an academic context. Presently, biosensors generally use electric or fluorescent transducers to relay a detection event. By recording data over time in the DNA of living cells, biosensors could become much cheaper and contain intrinsic datalogging. Possible applications could include long-term metabolite (e.g. glucose) monitors, chemical detectors, and quality control.

It’s worth noting that this technique is only at the proof of concept stage. Data was recorded and retrieved manually by the scientists into the bacterial genome with 90% accuracy, demonstrating that if cells can be engineered to record data themselves, accuracy and capacity are high enough for practical applications.

That being said, if anyone is working on a MEncoder or ffmpeg command line option for this, let us know in the comments.

Continue reading “Movie Encoded in DNA is the First Step Toward Datalogging with Living Cells”

Video With Sensor Data Overlay Via Arduino Mega

If you haven’t been paying attention, big wheel trikes are a thing. There are motor driven versions as well as OG pedal pushing types . [Flux Axiom] is of the OG (you only get one link, now its on you) flavor and has written an instructable that shows how to achieve some nice looking on screen data that he syncs up with the video for a professional looking finished product which you can see in the video after the break.

[Flux Axiom] is using an Arduino Mega in his setup along with a cornucopia of sensors and all their data is being logged onto an SD card. All the code used in his setup is available in his GitHub repository. [Flux Axiom] was also nice enough to include the calibration process he used for the sensors which is also located in the GitHub download.

Sadly [Flux Axiom] uses freedom hating software for combining the video and data, Race Render 3 is his current solution and he is pleased with the results. Leave it in the comments if you have an open source solution for combining the video and data that we can offer him as a replacement.

Edit: Correct spelling of handle.

Continue reading “Video With Sensor Data Overlay Via Arduino Mega”

Video: PWM on the ATmega328p

This week we continue on with another video in our series about how to program for the ATmega328p processor using C. The ATmega328p is at the heart of many Arduino boards. If you have been using them but want to add some more horsepower to your projects, this series of videos is for you. In this video, [Jack] talks about various types of pulse width modulation (PWM). You can use PWM to control the speed of a motor, the brightness of a LED, or to generate analog waveforms. [Jack] shows how to set up the processor to do locked anti-phase PWM to drive the wheels of the 3pi robot and then demos a short program that shows the code in action.

If you missed the previous posts in this series and would like to check them out…
Intro and how to set up the development environment : Click Here
Working with I/O pins: Click Here

Video is after the break…
Continue reading “Video: PWM on the ATmega328p”