Glowing Super Bowl helmets

glowing-football-helmets-adafruit

These geeky Superbowl decorations glow thanks to the EL panel hack which [Becky Stern] created. It’s almost impossible to make out in this image, but the EL panels have been applied to the surface of the helmet. On the San Francisco helmet you can just make out the black connector and cord at the bottom of the F.

El panels are a lot like EL wire (but they’re flat) in that the phosphors are excited when connected to a high voltage AC supply. You can cut the panels into shapes without a problem. The technique used here is to create a black vinyl mask to go over the top of the panel. This makes cutting the panel a lot easier.

The mask sticker is made on a vinyl cutter. [Becky] is a master at using the vector tool as you can see in the video after the break. She outlined each team logo with paths to create a file which the cutter can use. From there it took several tries to get the sticker just right as the curve of the helmet distorts the logos just a bit. Once it was dialed in she stuck the vinyl on the El panel and cut around the perimeter.

The Adafruit team sure loves to use electroluminescent accents.

[Read more...]

Ice record single needs six hours in the deep freeze before you can listen

ice-record

This delightful marketing ploy requires the listener to fabricate their own record out of ice. The band Shout Out Louds wanted to make a splash with their newest single. So they figured out how to make a playable record out of ice. The main problem with this is the grooves start to degrade immediately when the ice begins to melt. So they shipped a mold of the record and a bottle of water to a select few listeners (just ten in all). Hear the result in the video after the break.

Now if you want to make something like this for yourself we can help you out just a bit. The mold is made of silicone and it wasn’t so long ago that we saw a guide for those new to mold making. The raw material isn’t that hard to find either. The project above tried several different approaches and found the best results can be attained with plain old distilled water. No, the one hard part is figuring out how to make your own master. If you’ve got a way of doing this in the home lab, please tells us about it!

[Read more...]

Toner transfer for resist and silk screen using printable vinyl

silk-screen-printable-vinyl

This toner transfer method uses a different material than we normally see. The red sheet being peeled back isn’t toner transfer paper. It’s printable vinyl used for both the resist and the silk screen.

The application process is almost the same as any other toner transfer PCB fabrication material. The printable vinyl stick is first adhered to a piece of paper before feeding it through a laser printer. It is acceptable to clean the vinyl with alcohol before printing if you think there may be a finger print or other oil on its surface. After printing it is carefully aligned with the board and ironed on.

[Mincior Vicentiu] thinks there are a few big benefits to this material. It seems that as you heat the toner it expands and hardens, but the vinyl actually softens to make room for this. We can imagine that this helps alleviate the smudging that sometimes occurs when ironing toner that is simply printed on paper. The other advantage is that the vinyl peels off quite easily after ironing, where as you need to soak paper in water and carefully massage it off of the toner.

[via Dangerous Prototypes]

3D Printing Records

3D Printed Record

This is a working record created with a 3D printer. [Amanda] came up with a process that converts audio files into 3D models. These models can be printed and played on a standard record player.

The real work is done by a Processing sketch that creates a STL file. [Amanda] started off by trying to create a sine wave. She used this test to optimize the printing process. Then she used Python to extract audio data from WAV files and modified the processing script to process the data. After more tweaking, she was able to get a reasonable signal to noise ratio and minimize distortion.

The resulting records have a sample rate of 11 kHz and 5-6 bit resolution. The sound quality isn’t going to be the same as commercially pressed vinyl, but you can still make out the song.

Objet Connex 500 was used to print the records. This UV printer has a 600 dpi resolution, which is means it’s more accurate than extrusion printers. Your mileage may vary using different printers, but all of the Processing and Python code is available with the project write up.

After the break, watch [Amanda] spin some 3D printed records.

[Read more...]

Draw your own vinyl beats

 

The Dyskograf lets you make music with a magic marker. The musical installation looks much like a turntable for playing vinyl records. But instead of a spiraling groove containing the sounds, this uses marks on a paper disk to play sound samples.

You can see the light outline of several tracks on the paper disc shown above. By adding black marks the optical input of the Dyskograf knows when to start and end each sound. This is best illustrated in the video demonstration after the break.

The marker-based setup makes a lot of sense, and we think it would be perfect if the disc was a dry-erase board. It certainly makes it a lot easier to lay down new beats than this other optical turntable which required holes to be drilled in a vinyl record to play the sounds. While we’re on the topic you may also find this coin-based turntable sequencer of interest.

[Read more...]

Incredible fabrication process makes this Word Clock stand out

From the look of it his is just another Word Clock, right? From the outside maybe. But if you take a look at the build photos this a good example of extreme fabrication.The design uses a five-layer lamination of glass bezel, vinyl lettering, diffuser, mounting plate, and back panel. The mounting and lettering layers were labor intensive, but are also the reason for the gorgeous finished look.

The bezel consists of black adhesive foil applied to the back of the glass faceplate. The letters were cut out using a vinyl cutter, and the lamination process happened in a pool of water. This technique helps to ensure that no fine particles end up between the glass and the foil.

The wooden mounting bracket was ordered from a local kitchen cabinet fabricator. It’s MDF that is 17.7″ and has been edge wrapped in glossy white PVC. Once it arrived, [Muris] started drilling the 248 holes and their counter sinks. This is on the front side of the layer and when sprayed with silver paint the countsinks act as reflectors. On the back side he milled groves to accept PCB strips to host the LEDs as well as the breakout boards that hold the MAX7219 drivers.

Don’t miss the video clip after the break that shows off the final product.

[Read more...]

Cutting a record… on a CD

Vinyl records are an amazingly simple technology, but surprisingly we haven’t seen many builds to capitalize on the ease of recording music onto a vinyl disk. [Seringson] made his own vinyl polycarbonate cutter to record his own records at home. The impressive thing is he did this with parts just lying around.

Just like the professional and obsolete record cutters of yore, [Seringson]‘s build uses two speaker drivers mounted at a 45° angle to reproduce a stereo audio track. Each of these drivers reproduce the left and right audio track by carving them into the polycarbonate of a CD with an extremely sharp needle. From the video, the audio quality of [Seringson]‘s record cutter is pretty good – more than enough to recreate the sound of a 1940’s 78 RPM record, but not quite up to the task of reproducing something produced and mastered recently.

We’re extremely impressed that [Seringson] was able to a record cutter out of scraps he had lying around. Now we’ll wait patiently until a combination record/CD is released.

Tip ‘o the billycock to [Gervais] for sending this one in.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 91,362 other followers