Touch Tone MIDI Phone And Vocoder Covers Daft Punk

[poprhythm]’s Touch Tone MIDI Phone is a fantastic conversion of an old touch tone phone into a MIDI instrument complete with intact microphone, but this project isn’t just about showing off the result. [poprhythm] details everything about how he interfaced to the keypad, how he used that with an Arduino to create a working MIDI interface, and exactly how he decided — musically speaking — what each button should do. The LEDs on the phone are even repurposed to blink happily depending on what is going on, which is a nice touch.

Of course, it doesn’t end there. [poprhythm] also makes use of the microphone in the phone’s handset. Since the phone is now a MIDI instrument with both a microphone and note inputs, it’s possible to use them together as the inputs to vocoder software, which he demonstrates by covering Around the World by Daft Punk (video).

We love how [poprhythm] explains how he interfaced to everything because hardware work is all about such details, and finding the right resources. Here’s the GitHub repository for the Arduino code and a few links to other resources.

We have seen MIDI phone projects before, and each one is always unique in its own way: here’s a different approach to converting a keypad phone to MIDI, and this rotary pulse-dial phone went in a completely different direction with the phone itself completely unmodified, using only external interfacing.

You can admire [poprhythm]’s Touch Tone MIDI Phone in action in the short videos embedded below, with each one showing off a different aspect of the build. It’s great work!

Continue reading “Touch Tone MIDI Phone And Vocoder Covers Daft Punk”

Turning A MicroKORG Into A MicroKORG S With This Speaker Mod

When [Michael Wessel] bought his MicroKORG synthesizer/vocoder, he felt less than amused when two years later the MicroKORG S was released, with the ‘S’ standing for ‘sound’, apparently, for the 2+1 speaker system that was added to it. Undeterred, [Michael] figured out that both synthesizers are similar enough that one could likely add a similar speaker system to the original MicroKORG.

The similarities between the two products become apparent when one compares the original with its successor, with the latter seemingly mostly adding said speakers and more presets, along with a snazzy new exterior. (Although the 1970s styling of the original may have more fans.)  As the embedded video shows, this mod is fairly clean.

At the core of this mod is a PAM8403-based class D amplifier board. The PAM8403 is a 3 W audio amplifier, originally produced by Power Analog Microelectronics (now Diodes). While not an amazing amplifier, it lends itself well for battery-powered applications like the MicroKORG. Rounding out the build is a 7805 linear regulator to get 5 V for the PAM8403, a few filter capacitors, a switch to turn the speakers on/off, and of course the speakers.

Although there’s quite a bit of space in the enclosure, most speakers tend to be large enough that this can be a bit of a squeeze. [Michael] found some low-profile 20 W full-range speakers that seem to work well for this purpose. To finish wiring this up, all it takes is a hole saw and a way to get the audio output from the MicroKORG.

In this mod, [Michael] opted to get the audio from the output jack on the back, but for a cleaner result it probably could be wired straight into the on-board header.

Continue reading “Turning A MicroKORG Into A MicroKORG S With This Speaker Mod”

Rebuilding The First Vocal Encryption System

Back in the early days of radio, it was quickly apparent that the technology would revolutionize warfare, but only if some way could be found to prevent enemies from hearing what was said. During World War II, the Allies put a considerable amount of effort into securing vocal transmissions, resulting in a system called SIGSALY – 50 tons of gear developed by Bell Laboratories with the help of Alan Turing that successfully secured communications between the likes of Churchill and Roosevelt during the war.

Now, a small piece of the SIGSALY system lives again, in the form of a period-faithful reproduction of the vocal quantizer used in the system. It’s the work of [Jon D. Paul], who undertook the build to better understand how the SIGSALY system worked. [Jon] also wanted to honor the original builders, who developed a surprisingly sophisticated system given the technology of the day.

SIGSALY was seriously Top Secret in the day, and most of the documentation was destroyed when the system was decommissioned. Working from scant information, [Jon] was able to recreate the quantizer from period parts, including five vintage VT-109/2051 thyratrons scrounged from eBay. The vacuum tubes are similar in operation to silicon-controlled rectifiers (SCRs) and form the core of the ADC, along with a resistor divider ladder network. Almost every component is period correct, and everything is housed in a nice acrylic case. It’s a beautiful piece of work and a great homage to a nearly forgotten piece of cryptographic history.

Interestingly, Bell Labs had a bit of a head start on the technology that went into SIGSALY, by virtue of their work on the first voice synthesizer in the 1930s.

Continue reading “Rebuilding The First Vocal Encryption System”

A 38-Year-Old Vocoder Project

It is hard to remember that scant decades ago, electronic magazines — the pre-Internet equivalent of blogs — featured lots of audio circuits based on analog processing. Music synthesizers were popular for example, because microcontrollers were expensive and unable to perform digital signal processing tasks in the way you would use them today. [Julian] has been trying to build a vocoder from that era from ETI magazine. Along the way, he’s making videos documenting what he’s found and how’s he resolving issues.

The circuit generates levels for particular input frequencies. It does so with a two-op-amp bandpass filter, a two-op-amp rectifier, and then an op-amp lowpass filter. That’s five op-amps for each band (there are 14 bands) plus the support circuitry. And that’s just the input section! Today, you would simply sample the signal and do a fast Fourier transform (FFT) to get the same kind of data.

Continue reading “A 38-Year-Old Vocoder Project”

Real Time Video Anonymizer

If you’re wondering, Cornell is just like every other university in one respect: the grad students are starving, and wherever there is free food, students circle like vultures. The engineering and CS departments have a mailing list alerting people to free food, but a more automated solution was desired. The first web cam ever was used to notify grad students if a coffee pot was full, but Cornell shot down this idea on the basis of privacy concerns.

It’s final project time for [Bruce Land]’s courses, and a project by [Ferian Chen] and [Sean Ogden] solved the privacy concerns of a webcam in a kitchen. It’s a real-time video anonymizer, that can also be used to livestream ransom demands if you’re so inclined.

There are actually two parts to this project. The first part pixellates faces and any other skin tone, just like you’d see on a true crime TV show. This part of the project was based on an FPGA-based face detection project. ‘Skin’ pixels are defined as having a difference between the red and green channels within a certain range. With the right lighting, it works very well.

You can identify someone with their voice, too, so [Ferian] and [Sean] also made efforts to disguise hungry student’s voices as well. This was done with a phase vocoder that changes the pitch of someone’s voice, but not the spectral characteristics. The result should have been an audio channel that can’t be pinned down to one person, but is still recognizable as speech. The audio processing didn’t work as intended, with noticeable artifacts in the output. There’s still some work to be done, and now that [Ferian] and [Sean] aren’t checking the kitchen every ten minutes, the might have the time to do it.

Retrotechtacular: The Voder From Bell Labs

This is the under-the-hood view of the keyboard for the Voder (Voice Operating Demonstrator), the first electronic device capable of generating continuous human speech. It accomplishes this feat through a series of keys that generate the syllables, plosives, and affricatives normally produced by the human larynx and shaped by the throat and tongue. This week’s film is a picture montage paired with the audio from the demonstration of the Voder at the 1939 World’s Fair.

The Voder was created by one [Homer Dudley] at Bell Laboratories. He did so in conjunction with the Vocoder, which analyzes human-generated speech for encrypted transfer and re-synthesizes it on the other end. [Dudley] spent over 40 years researching speech at Bell Laboratories. His development of both the Voder and the Vocoder were instrumental in the SIGSALY project which aimed to deliver encrypted voice communication to the theatres of WWII.

Continue reading “Retrotechtacular: The Voder From Bell Labs”