Touching Light with Haptic Feedback

Many of us have gone on a stationary romp through some virtual or augmented scape with one of the few headsets out in the wild today. While the experience of viewing a convincing figment of reality is an exciting sensation in itself, [Mark Lee] and [Kevin Wang] are figuring out how to tie other senses into the mix.

The duo from Cornell University have built a mechanical exoskeleton that responds to light with haptic feedback. This means the wearer can touch the sphere of light around a source as if it were a solid object. Photo resistors are mounted like antenna to the tip of each finger, which they filed down around the edges to receive a more  diffused amount of light. When the wearer of the apparatus moves their hand towards a light source, the sensors trigger servo motors mounted on the back of the hand to actuate and retract a series of 3D printed tendons which arch upward and connect to the individual fingers of the wearer. This way as the resistors receive varying amounts of light, they can react independently to simulate physical contours.

One of the goals of the project was to produce a working proof of concept with no more than 100 dollars worth of materials, which [Mark] and [Kevin] achieve with some cash to spare. Their list of parts can be found on their blog along with some more details on the project.

Continue reading “Touching Light with Haptic Feedback”

‘Duinos and VR Environments

At the Atmel booth at Maker Faire, they were showing off a few very cool bits and baubles. We’ve got a post on the WiFi shield in the works, but the most impressive person at the booth was [Quin]. He has a company, he’s already shipping products, and he has a few projects already in the works. What were you doing at 13?

[Quin]’s Qduino Mini is your basic Arduino compatible board with a LiPo charging circuit. There’s also a ‘fuel gauge’ of sorts for the battery. The project will be hitting Kickstarter sometime next month, and we’ll probably put that up in a links post.

Oh, [Quin] was also rocking some awesome kicks at the Faire. Atmel, I’m trying to give you money for these shoes, but you’re not taking it.

[Sophie] had a really cool installation at the faire, and notably something that was first featured on hackaday.io. Basically, it’s a virtually reality Segway, built with an Oculus, Leap Motion, a Wobbleboard, an Android that allows you to cruise on everyone’s favorite barely-cool balancing scooter through a virtual landscape.

This project was a collaboration between [Sophie], [Takafumi Ide], [Adelle Lin], and [Martha Hipley]. The virtual landscape was built in Unity, displayed on the Oculus, controlled with an accelerometer on a phone, and has input with a Leap Motion. There are destructible and interactable things in the environment that can be pushed around with the Leap Motion, and with the helmet-mounted fans, you can feel the wind in your hair as you cruise over the landscape on your hovering Segway-like vehicle. This is really one of the best VR projects we’ve ever seen.

Bring A Hack at World Maker Faire 2014

After a hard Saturday at World Maker Faire, some of the best and brightest in the Hacker/Maker community descended on The Holiday Inn for “Bring A Hack”. Created by [Jeri Ellsworth] several years ago at the Bay Area Maker Faire, Bring A Hack (BAH) is an informal gathering. Sometimes a dinner, sometimes a group getting together at a local bar, BAH is has just one rule: You have to bring a hack!

[Sophi Kravitz] has become the unofficial event organizer for BAH in New York. This year she did a bit of live hacking, as she converted her Wobble Wonder headgear from wired to wireless control.

[Chris Gammell] brought his original Bench BudEE from Contextual Electronics. He showed off a few of his board customizations, including making a TSSOP part fit on the wrong footprint.

BAH-eggbotsmall[Windell and Lenore] from Evil Mad Scientist Laboratories brought a few hacks along. They picked up an old Radio Shack music player chip at the Electronics Flea Market and built it up on a breadboard. Also on display was their new EggBot Pro. The Pro is a beautifully machined version of the eggbot. Everything is built strong to withstand the sort of duty an EggBot would see at a hackerspace or public library. [Windell] was full of surprises, as he also gave everyone chunks of Sal Ammoniac, which is a great way to bring the tin back to a tired soldering iron tip. The hack was that he found his Sal Ammoniac at a local Indian grocery in the Bay Area. Check out [Windell’s] blog entry for more information.

BAH-diyVRSmall[Cal Howard] brought his DIY VR goggles. [Cal] converted a Kindle Fire into an Oculus Rift style head mounted display by adding a couple of magnifying lenses, some bamboo kebab sticks to hold the lenses in place. Judicious use of cardboard and duct tape completed the project. His current hurdle is getting past the Fire’s lack of an accelerometer. [Cal] planned to spend Sunday at Maker Faire adding one of his own!

As the hour grew late, everyone started to trickle out. Tired but happy from a long day at Maker Faire, the Bring A Hacker partygoers headed back to their hotels to get some sleep before World Maker Faire’s final day.

VRcade’s The Nightmare Machine (Kickstarter Campaign)

vrcade2

Aiming to be the leader in Virtual Reality horror experiences is the immersive VR haunted house in Seattle called ‘The Nightmare Machine’ which promises to be one of the most terrifying events this Halloween. But they need some assistance raising money to achieve the type of scale on a large public level that the project is attempting. The goal is $70,000 within a 30 day period which is quite the challenge, and the team will need to hustle every single day in order to accomplish it.

Yet the focus of the project looks good though, which is to lower the massive barriers of entry in VR that are associated with high hardware costs and provide people with a terrifying 5 minutes of nightmare-inducing experiences. This type of fidelity and range is usually only seen in military research facilities and university labs, like the MxR Lab at USC. And, their custom-built head mounted displays bring out this technology into the reach of the public ready to scare the pants off of anyone willing to put on the VR goggles.

The headsets are completely wireless, multi-player and contain immersive binaural audio inside. A motion sensing system has also been integrated that can track movements of the users within hundreds of square feet. Their platform is a combination of custom in-house and 3rd party hardware along with a slick software framework. The technology looks amazing, and the prizes given out through the Kickstarter are cool too! For example, anyone who puts in $175 or more gets to have their head 3D scanned and inserted into the Nightmare Machine. The rest of the prices include tickets to the October showcase where demos of the VR experience will be shown.

Continue reading “VRcade’s The Nightmare Machine (Kickstarter Campaign)”

Non-Lethal Electric Chair Brings the Death Row Experience Home

Non-Lethal electric chair for Oculus Rift Hackathon

One of our trusty tipsters named [Arman] wrote in to tell us about this awesome little Horror VR Hackathon that sought to create a non-lethal electric chair, for a seriously creepy and shocking experience.

[Arman] works in a small prototyping shop, so when a few guys from the local VR group called to ask for help building a non-lethal electric chair, he thought they were joking — until they showed up at the shop! Finally understanding what they really wanted to do, he hooked them up with an EL wire power supply (high voltage AC, low amperage) for their first prototype.

Unfortunately the EL power supply driver took too much juice, so they called [Arman] back the next day to hack together some of those joke gum shockers instead — he hooked them up to an Arduino and they work like a charm.  Continue reading “Non-Lethal Electric Chair Brings the Death Row Experience Home”

[Jeri] spills the beans on her AR glasses

AR

In the last year, [Jeri Ellsworth] has been very busy. She was hired by Valve, started development of an augmented reality system, fired by Valve, and started a new company with [Rick Johnson] to bring her augmented reality glasses to the market. On the last Amp Hour podcast she spilled the beans on what went down at Valve, how her glasses work, and what her plans for the future are.

[Jeri] and [Rick]’s castAR glasses aren’t virtual reality glasses like the Oculus Rift or other virtual reality glasses that cut you off from the real world. The castAR glasses preserve your peripheral vision by projecting images and objects onto a gray retro-reflective mat and allows you to interact with a virtual environment with an electronic wand. So far, there are a few demos for the castAR system; a Jenga clone, and a game of battle chess called Team For Chess, a wonderful reference to Valve’s hat simulator.

The electronics inside the castAR glasses are fairly impressive; new frames are drawn on the retro-reflective surface at 100 Hz, positioning accuracy is in the sub-millimeter range, and thanks to [Jeri]’s clever engineering the entire system should be priced at about $200. Not too bad for an awesome device that can be used not only for D&D and Warhammer, but also for some very cool practical applications like visualizing engineering models of 3D prints before they’re printed.

3D Printing sensor mounts for the Oculus Rift

While browsing an oculus rift thread on reddit, I saw someone mention how nice it would be to have some actual mounts for external sensors on their Rift. The idea is that adding additional sensors or cameras will allow us to expand the capabilities of the rift. With something like the Razor Hydra, you can add quick positional tracking (the rift only tracks rotation, not position). With some webcams, you could theoretically do some stereoscopic augmented reality.  Unfortunately, attaching all these things to the rift is a bit of a pain at the moment.

I had all the things right here in front of me to make this happen, so I did! I’ve quickly tossed together two accessories for the Rift.

1. a small bracket that feeds onto the velcro on the back. People will likely use this for “heavy” position sensors. They may be fairly light, but any additional weight on the front of the rift is unwanted.

2. A snap-on face plate that has a modular design. This wold be for mounting cameras on the front of the rift.

All of these files can be downloaded here.