Biped Bob Walks and Dances

If you have a few servo motors, an Arduino, and a Bluetooth module, you could make Biped Bob as a weekend project. [B. Aswinth Raj] used a 3D printer, but he also points out that you could have the parts printed by a service or just cut them out of cardboard. They aren’t that complex.

Each of Bob’s legs has two servo motors: one for the hip and one for the ankle. Of course, the real work is in the software, and the post breaks it down piece-by-piece. In addition to the Arduino code, there’s an Android app written using Processing. You can build it yourself, or download the APK. The robot connects to the phone via BlueTooth and provides a simple user interface to do a few different walking gaits and dances. You can see a few videos of Biped Bob in action, below.

This wouldn’t be a bad starter project for a young person or anyone getting started with robotics, especially if you have a 3D printer. However, it is fairly limited since there are no sensors. Then again, that could be version two, if you were feeling adventurous.

We have mixed feelings about the BlueTooth control. BlueTooth modules are cheap and readily available, but so are ESP8266s. It probably would not be very difficult to put Bob on WiFi and let him serve his own control page to any web browser.

If Bob meets Jimmy, he may find himself envious. However, Jimmy would be a little more challenging to build. We’ve actually seen quite a few walking ‘bots over the years. Continue reading “Biped Bob Walks and Dances”

Hackaday Prize Entry: Experiments with Wheeled Legs

If you’ve been keeping tabs on recent developments in robotics, you surely remember Handle — the awesome walking, wheeled robot from Boston Dynamics. There’s a good reason why such a combination is a good choice of locomotion for robots. Rolling on wheels is a good way to cover smooth terrain with high efficiency. But when you hit rocky patches or obstacles, using legs to negotiate these obstacles makes sense. But Handle isn’t the only one, nor is it the first.

[Radomir Dopieralski] has been building small robots for a while now, and is especially interested in how they move. He is sharing his experience while Experimenting with Wheeled Legs, with the eventual aim of “building an experimental walking+rolling robot, to more efficiently kill all humans and thus solve all the problems”. His pithy comments aside, investigating and experimenting with different forms of locomotion to understand which method is most efficient will pay rich dividends in the design of future robots.

During an earlier version of the Hackaday Prize, [Radomir] snagged a coupon for laser cutting services. He used it to build a new robot based on a fresh look at some of his earlier designs. This resulted in the Logicoma-kun — a functional model of a Logikoma (a logistics robot designed to be a fast all-terrain vehicle for transporting weapons and ammunition) from “Ghost in the Shell: Arise”. Along the way, he figured out how to save some servo channels. For gripping function, he needed to drive two servos in sync with each other, but in opposing directions. This would usually require two GPIO’s and a few extra lines of code. Instead, he dismantled a servo and reversed the motor AND the servo potentiometer connections.

But this is still early days for [Radomir]. He is fleshing out ideas, looking for feedback and discussions on robotic locomotion. This fits in perfectly with the “Design Your Concept” phase of the Hackaday Prize 2017. He has already made some progress on Logicoma-kum by having it move in either the wheeled or walking modes — check out the videos after the break.

Continue reading “Hackaday Prize Entry: Experiments with Wheeled Legs”

Gyroman Walks with Just One Motor

For some reason, we seem to really want our robots to walk on two legs like we do. And this despite how much the robots themselves want to be made out of motors, which match up so naturally with wheels. The result is a proliferation of inventive walking mechanisms. Here’s another.

Gyroman is a 3D printed gyroscope with legs. The gyroscope is geared down to lift one leg and then the other. First-semester physics, that we still find a little bit magical, makes the gyro precess and the robot turns a bit. Time these just right and it walks. See the video below for a demo. (Admittedly, Gyroman looks like he’s had a bit too much to drink as he winds down.)

Continue reading “Gyroman Walks with Just One Motor”

Hackaday Prize Entry: Solving The Shortage Of Walking Robots

The world has a severe lack of robots, and the shortage of walking robots is untenable. We were promised flying cars and fusion reactors, yet here we are, 15 years into the twenty-first century without even a robotic pet spider.

[Radomir]’s entry for The Hackaday Prize aims to fix this bizarre oversight of scientific and technological progress. He’s designed a small, inexpensive, but very well designed quadrupod robot that will put full reverse kinematics on your desk for under $50.

To solve humanity’s glaring lack of walking robots, [Radomir] designed Tote, a four-legged robot whose chassis is mostly composed of only 9 gram servos. There are twelve servos in total, three on each of its four legs. It’s an extension of his earlier µKubik robot. While the µKubik was powered by Python, the Tote is all Arduinofied, calculating the trajectories of each leg dozens of times a second with an Arduino Pro Mini.

This isn’t the only walking robot kit on; last year, [The Big One] created Stubby the Teaching Hexapod. Even though Stubby featured six legs, it’s still remarkably similar to Tote; 9 gram servos provide all the locomotion, and all the software is running on a relatively small ATMega microcontroller. Both are great introductions to walking robots, and both bots will surely be capable and just rulers of mankind after the robot apocalypse.

The 2015 Hackaday Prize is sponsored by:

The Halfbug

[Alex] posted up build details of his robot, Halfbot, on Tinkerlog. We’ve been big fans of his work ever since his Synchronizing Fireflies Instructable way back in the day. [Alex’s] work usually combines an unconventional idea with minimalistic design and precise execution, and Halfbot is no exception.

You’ll have to watch the video (embedded below the break) to fully appreciate the way it moves. The two big front legs alternate with the small front pads to make an always-stable tripod with the caster wheel at the back. It lifts itself up, moves a bit forward, and then rests itself down on the pads again while the legs get in position for the next step. It’s not going to win any speed tournaments, but it’s a great-looking gait.

The head unit also has two degrees of freedom, allowing it to scan around with its ultrasonic rangefinder unit, and adding a bit more personality to the whole affair.

[Alex] mentions that he’d recently gotten a lathe and then a CNC mill. So it’s no surprise that he made all the parts from scratch just to give the machines a workout. We think he did a great job with the overall aesthetics, and in particular the battery pack.

We’re excited to see how [Alex] adds new behaviors as he develops the firmware. No pressure!

Continue reading “The Halfbug”

Meet J-Deite Quarter, the 4-Foot-Tall Transformer

There’s just something about the idea of robots turning into everyday objects that fascinates us all. It seems Japan outdoes the world in that category, and the J-Deite project is no exception. J-Deite Quarter is the first transforming robot to come from the collaborative project between  [Kenji Ishida] of Brave Robotics, [Watur Yoshizaki] of Asratec Corp., and Tomy Co. Ltd. If Brave Robotics sounds familiar, that’s because this isn’t the first transforming robot [Kenji Ishida] has produced, nor the first featured on Hackaday.

The J-Deite Quarter weighs 77lbs (35kg) and can run for an hour on a single battery charge. It’s joints are powered by Futaba servos. It is controlled by the proprietary V-SIDO OS designed by [Watur Yoshizaki]. As a robot, it stands at 4.25 feet (1.3m). It walks at a rather slow speed of 0.6mph (1km/hr). It has several points of articulation; it can bend its arms and flex its fingers. In less than 30 seconds, the robot transforms into an equally long two-seat sports car with a maximum speed of just over 6mph (10km/hr). Overall, the J-Deite Quarter is no speed demon, but it is noteworthy for being functional in both forms.

The web site has a cute backstory featuring a green meteorite that allows the “real” J-Deiter to communicate with the developers trying to create a robot in its image. Along with the video, it resembles a marketing ploy for a toy, which could explain Tomy’s involvement. After all, Tomy, along with Hasbro, developed the original Transformers toy line. Unfortunately, the J-Deiter Quarter is just a prototype, with no plans for mass production at this time. Instead, the project’s focus is on making a bigger and better J-Deiter. There are plans for a J-Deiter Half (8-foot-tall) to be developed by 2016, with the final goal of creating a 16-foot-tall transforming robot by 2020.

Enjoy the video that shows what J-Deite Quarter is capable of (with added sound effects, of course) after the break. Now, if you’ll excuse me, I have a sudden hankering to watch some Transformers and Voltron cartoons.

[via SimpleBotics]

Continue reading “Meet J-Deite Quarter, the 4-Foot-Tall Transformer”

Baby Quadruped Robot, Learning To Walk

We’ve all seen videos of those crazy Boston Dynamics running quadruped robots that can reach up to 28 mph. Those things are amazing and it’s almost impossible to imagine how to even start building one. [Max] loves his robots and wanted to build a quadruped but, being a robot hobbyist, didn’t have the serious cash needed to make an extravagant robot like those of Boston Dynamics. Instead he started bridging the gap by designing a quadruped robot that is a little bit slower and tons cheaper.

quadruped-joint[Max] designed all of the mechanical parts himself. After weighing the advantages and disadvantages of different materials, he decided that the frame would be made from 5mm acrylic sheet. The main body of the robot has acrylic ribs that are spaced apart by threaded rods. Twelve RC servos make up all of the joints, 3 in each leg. Notice in this photo how there is one servo that immediately rotates another servo. To support the other side of the rotating servo, [Max] epoxied on a T-nut, stuck in a short length of threaded rod which is then supported in the frame by a ball bearing. Simple and effective! The upper portions of the legs are also made from acrylic sheet and the lower legs are from a cheap camera tripod. Rubber feet ensure a slip resistant stance.

All of the servos are controlled by an Arduino Mega. [Max] is currently writing a sketch that will perform the complex math and determine coordinated servo motions for movements us humans take for granted, like ‘walk forward’. As you can see in the videos, [Max’s] robot won’t be catching the Boston Dynamics’ Cheetah any time soon but he is off to a great start.

Future plans for this project include bluetooth control and integrating the ultrasonic sensor proactively installed in the ‘head’ of the robot. Check out the videos after the break. [Max] is looking for some feedback on his project. We here at HaD think this needs a great name. Let’s hear some suggestions in the comments…

Continue reading “Baby Quadruped Robot, Learning To Walk”