A Watercooled Headlamp, Because Why Not?

There are extremely high powered LEDs out there, and most of the ‘creative’ uses of these are extremely high-powered flashlights, complete with heatsinks, forced air cooling, and beefy power supplies. [Christian] wanted to play around with one of these LEDs, but he wanted something a little more unique. He chose a headlamp, a build that is made even more impressive by the fact it is watercooled.

The body of the headlamp was milled out of aluminum, with a space for the LED in the front and channels in the back for coolant. Also in this enclosure are two buttons, a temperature sensor, and a port for the hose that carries the tubes and wires.

This hose connects to a large battery pack that houses four large lithium phosphate batteries and a boost converter built around an Arduino. The pack also houses a pump and reservoir that is able to keep the LED cool even at 130W.

A PC rig that belongs on the wall of an art museum

When Overclock.net user [Show4Pro] decided to upgrade his “old dusty rig”, he eschewed the conventional PC form factor and instead built an incredibly sexy custom wall-mounted case.

The six sticks of RAM, quad HDD/SSDs, and dual Radeon HD7970s are enough to make all but the most hard core gamer blush, but that was only the beginning here.  Using a Dremel tool, Show4Pro cut the frame from a piece of hardboard and coated it with a mock-carbon fiber vinyl sheet.  This backdrop acts to both hide the (many) cables and provide structural support to the components.  Custom light guides cut from an acrylic sheet are back lit with LEDs and serve as a border for each of the components.

Laying all of the boards flat on the frame required the use of PCIe risers to move the video cards away from the mother board.  Long PCIe connectors are very susceptible to EMI though, and Show4Pro ran into a few stability problems that he eventually had to resolve with some high-end shielded risers.

Besides that one minor hiccough, the project went off without a hitch and it looks like his 100+ hours of work have really paid off.

Via Reddit.

Building the electronics for a Tesla coil… and watercooling them

A few years ago [Patrick] was offered the Tesla coil of a friend of a friend. This was an opportunity too good for him to pass up.

He then began the creation of an Off-Line Tesla Coil (OLTC), where no supply transformer is used. The incoming mains supply is rectified and directly fed into the tank capacitor.

[Patrick] therefore had to build a huge capacitor bank and more importantly his own primary coil, made with a 1.6mm (0.064″) copper sheet to handle the immense current involved. Air cooling the electronics was sufficient until he started using his three phase input supply. As more power involves more heat, a waterblock was designed to cool the main transistor.

Patrick’s write-up is very detailed and worth the read. Once you’re finished with it, we advise you to browse through his website, where a lot more cool projects are described.

Putting 300 watts of LEDs on an RC plane

Being a member of the FPVlab forums, [HugeOne] is really in to strapping a video camera to RC airplanes and flying around by the seat of his pants. He’s also in to flying his plane at night. Combine these two interests, and you’ve got 300 watts of LEDs flying around at night, most likely causing a spike in UFO reports in [HugeOne]’s native Quebec.

The main issue with putting 16 CREE XM-L LEDs in such a confined space is the issue of heat; even though these LEDs are amazingly efficient, they still produce a good amount of heat. [HugeOne] solved this problem by soldering these LEDs to a piece of copper pipe and connecting two radiators to his plane for liquid cooling.

The result is a small, lightweight LED array capable of producing more than 20,000 lumens flying around the wilds of Quebec. This greatly improves [HugeOne]’s night flying ability (video after the break), and has surely annoyed the local police department with an increase in UFO reports.

Does anyone know how bright the nav and landing lights on single-engine passenger airplanes are?

Continue reading “Putting 300 watts of LEDs on an RC plane”

Keeping axolotl healthy and cool

The real life Mudkip Wooper Pokemon seen above is an axolotl, a salamander-like animal that lives in only one lake near Mexico City. These adorable animals can be bred in captivity, but keeping them is a challenge. [LRVICK] decided he didn’t want to throw down hundreds of dollars for an aquarium cooler so he built his own out of parts usually used for keeping computers nice and cold.

Commercial aquarium coolers that would meet the requirements start around $300 and go up from there. Not wanting to spend that much, [LRVICK] found a 77 Watt Peltier cooler for $5 and figured he could make it work. Off-the-shelf parts for water cooling CPUs were used to construct the aquarium cooler – a water block on the cold side, a huge heat sink and fan for the hot side, and a bunch of tubing goes up to the tank.

Now [LRVICK] has an axolotl housed in a very professional-looking aquarium that is a steady 65 degrees. He’s got a very nice build, and the axolotl looks very happy.

My desk IS my computer case

If you think that your water cooled rig is pretty sweet, check out this creation by Dutch PC enthusiast [Peter Brands] (Google Translation).

With his computer tweaked as far as he could imagine, he decided to spruce up his office a bit. In the process, he ended up tweaking his computer just a little bit more. After seeing a build put together by another computer enthusiast, he set off to construct a desk in which he could show off his computer. He spent some time drawing up plans with Google Sketchup and with the help of a friendly neighbor, started construction of his desk/PC case.

The desk is constructed from 3mm thick aluminum, and houses most of his computer’s components under a thick piece of glass. The only portion of the computer that is not enclosed in the desk is the 9-fan radiator he used for his water cooling setup. That part resides in his crawl space, which he connects to his PC via a pair of large water hoses he punched through his tile floor. If you are interested, you can see all 800+ pictures of the build here.

Simply awesome!

[Thanks duchie]

Update: Foundation PC Cooling

coolupdate

[gigs], whose foundation-based PC cooling project we covered earlier, has posted his initial test results. There was a large debate going back and forth in the comments as to whether or not this would work, and hopefully this should clear most of it up. He used a 150W fish tank heater to simulated his system’s heat output, and used a quiet fish tank pump to keep the water flowing. Over 8 hours, he was able to maintain a constant temperature 16° C (61° F). While not quite frigid, this would definitely provide ample cooling for normal operation with some headroom for overclocking.

Chart of results after the jump.

[thanks to gigs for getting back with real data so soon]

Continue reading “Update: Foundation PC Cooling”