IKEA Lantern Houses Full-Featured Weather Station

From plain and utilitarian to the sleek and professional, there are a lot of ways to build a multifunction weather station. We’d thought we’d seen it all here, but building a weather station into an IKEA lantern is a pretty unique presentation.

There’s  an active community over at ikeahackers.net, and the variety of IKEA hacks they’ve come up with is pretty astounding. For this weather hack, [Richard Stevens] chose the Borrby, a $15 candle lantern. While it doesn’t exactly scream “weather station”, the form factor makes sense – plenty of room for electronics, easily replaced windows, and a nice cupola for mounting extra displays. [Richard]’s build includes a barometer, a hygrometer, and a thermometer, along with graphing displays for trends and historical data. There’s also an alarm clock and a rear panel bristling with more connectors and switches than an 80s-era HP oscilloscope. The wiring is admittedly “rats-nest style”, but as you can see in the video after the break, it works pretty well and looks good too.

Interested in rolling your own non-lantern weather station? Check out this headless Weather Underground sensor suite, or a simple panel of analog meters.

Continue reading “IKEA Lantern Houses Full-Featured Weather Station”

Solar-powered Weather Station Has the Complete Suite of Sensors

There was a time when getting weather conditions was only as timely or as local as the six o’clock news from the nearest big-city TV station. Monitoring the weather now is much more granular thanks to the proliferation of personal weather stations. For the ultimate in personalized weather, though, you might want to build your own solar powered weather station.

It looks like [Brian Masney] went all out in designing his weather station. It supports a full stack of sensors – wind speed and direction, rain, temperature, pressure, and dew point. About the only other parameters not supported (yet) are solar radiation, UV, and soil moisture and temperature. The design looks friendly enough that adding those sensors should be a snap – if fact, the 3D models in his GitHub repo suggest that he’s already working on soil sensors. The wind and rain sensor boom is an off-the-shelf unit from Sparkfun, and the temperature and pressure sensors are housed in a very professional 3D printed screen enclosure. All the sensors talk to a Raspberry Pi living in a (hopefully) waterproof enclosure topped with a solar panel for charging the stations batteries. All in all it’s a comprehensive build; you can check out the conditions at [Brian]’s place on Weather Underground.

Weather stations are popular around these parts, as witnessed by this reverse-engineered sensor suite or even this squirrel-logic based station.

Tiny Matchbox WiFi Weather Station

Sometimes a project doesn’t have to be technically amazing to win over our hearts. [Malte]’s ESP8266-based weather station is so cute, and so nicely executed, that it’s easily worth a look. It could totally be a commercial product, and it’s smaller than a matchbox.

It combines temperature, humidity, and barometric pressure sensors on one side of a PCB, with pads for soldering a pre-built ESP8266 module on the other side. Solder it all together and flash the firmware and you’re almost all set.

The final step is to configure it to work with the network. For this, [Malte] built in a nice web-based configuration (and display) application. It also can log its data to an MQTT system, so there’s a bunch more configuration (which we’re trying to make easier) needed there, and the web frontend makes that light work. Everything, from the hardware to the firmware, and even a pre-compiled binary, is up on his GitHub. Very complete and very well done.

If you can read German, or are willing to run it through a translator, give his personal projects webpage a look as well. Good stuff here. Now all he needs is a matching nice display for inside.

Beautiful Weather Station uses Acrylic, RGB LED, and and ESP8266

Everyone knows there’s form and there’s function. It isn’t fair, but people do judge on appearance, sometimes even overriding all other concerns. So while your Makerspace buddies might be impressed by your weather station built on a breadboard, your significant other probably isn’t. [Dennisv15] took an ordinary looking weather station design with a 0.96″ display and turned into an attractive desk piece with a much larger display and an artistic–and functional–enclosure.

The acrylic cloud lights up thanks to an RGB LED Neopixel strip and can indicate weather trends at a glance: red for warmer, blue for colder, flashing for inclement weather. The project was truly multidisciplinary, using a laser cutter to produce the body and the stand, a 3D-printed display bezel, and a PCB to make it easy to build.

Continue reading “Beautiful Weather Station uses Acrylic, RGB LED, and and ESP8266”

Raspberry Pi Wind Measurement

A well organized approach to a project is a delight to see. [Pavel Gesyuk] takes just that approach with the experiments on his blog. Experiment 13 is a multi-part series using a Raspberry Pi as the heart of a weather station. [Pavel] is looking at wind speed and direction, and temperature measurement, plus solar power for the station. One of his videos, there are many, is after the break.

electrical_02_tThe anemometer and direction sensors are stock units wired to a Raspberry Pi A+ using an analog to digital daughter board. The data from the temperature sensor is acquired using I2C. During one part of the experiment he uses an EDIMAX WiFi adapter for collecting the data.

Python is [Pavel’s’ language of choice for development and freely shares his code for others to see. The code collects the data and displays it on a monitor connected to the Pi. The experiment also attempts to use solar power to charge batteries so the station is not dependent on mains power.

The mechanical assembly shows attention to detail commensurate with his project presentation and we respect how well organized the work is.

Continue reading “Raspberry Pi Wind Measurement”

Hackaday Prize Entry: 20,000 Weather Stations

Team Tahmo has a plan to put a network of 20,000 weather stations across sub-Saharan Africa. That’s an impressive goal, and already they have pilot stations in Senegal, Chad, Nigeria, Uganda, and South Africa. For their Hackaday Prize entry, they thought it would make sense to add more advanced sensors to their weather stations, and came up with GPS, lightning, and large scale soil moisture sensors.

The sensors already deployed have the usual complement of meteorological equipment – thermometers, anemometers, barometers, and rain gauges. These stations are connected to a school’s Internet connection where students can monitor the local weather patterns and upload the data. Team Tahmo is building a small add-on board for their Prize entry using an AS3935 Franklin Lightning sensor and a GPS module.

In the interests of rapid design cycles, the team is using off-the-shelf modules for the lightning detector and GPS module. They hit up the Hackaday Prize Collabratorium for some advice on PCB design and have everything pretty much nailed down thanks to a few helpful hackers.

It’s a great project for one of the most ambitious crowdsourced data gathering projects ever conceived, and something that would vastly improve weather predictions across the African continent. Even if their entry does just monitor lightning strikes, it’s still an admirable goal and one of the most useful projects for this year’s Hackaday Prize.

The 2015 Hackaday Prize is sponsored by:

Wireless Weather Station

High schooler [Vlad] spent about a year building up his battery-operated, wireless weather station. Along the way, not only has he learnt a lot and picked up useful skills, but also managed to blog his progress.

The station measures temperature, humidity, pressure and battery voltage, and he plans to add sensors for wind speed, wind direction and rainfall soon. It is powered via a solar panel and can run on a charged battery for a full month. The sensor module transmits data to a remote receiver connected to a computer from where it is published to the internet. Barometric pressure is measured using the BMP180 and the DHT22 provides temperature and humidity values. The link between the transmit and receive sections uses a 433MHz Superhetrodyne RF Kit which gives [Vlad] a range of 50m. There’s an ATMega328 on the transmitter and receiver side. He’s taking measurements once every 12 minutes, and putting the micro controller in low power mode using the Rocket Scream Low Power Library. A 5W, 12V solar panel charges the 6V Lead Acid battery via a LM317 based charge circuit. This ensures the battery gets charged even when the solar panel is not receiving optimal radiation. One hour of sunlight provides enough charge to keep it going for 2 days. And a fully charged battery will keep it running for a full month even when there’s no sunlight.

The server software consists of two parts. The first pushes serial data to a mySQL database. This is written in Visual Studio C# using help from Oracle mySQL connector. The second part publishes the entries in the mySQL database to the web server. This is written in php, and uses  Libchart for graphing. He’s got the code, schematics, parts list and a lot of other information available for download on his blog. There’s a couple of items pending on his to-do list, so if you have any tips to offer post your comments below.