The Latest, Best WiFi Module Has Been Announced

A little more than a year ago, a new product was released onto the vast, vast marketplace of cheap electronics. It was the ESP8266, and this tiny and cheap WiFi module has since taken over the space of hobbyist electronics and become the de facto standard for connecting tiny microcontrollers to the Internet.

Now there’s an upgrade on the horizon. [John Lee], the public face of Espressif, the makers of the ESP8266, has announced the next product they’re working on. It’s called the ESP32, and if the specs given are correct, it looks to be the next great thing for the Internet of Things.

The ESP32 will now contain two Tensilica processors running at 160MHz, compared to the ‘8266’s one processor running at 80 MHz. The amount of RAM has been increased to 400 kB, Bluetooth LE has been added, WiFi is faster, and there are even more peripherals tucked away in this tiny piece of silicon.

The new ESP32 includes new, simplified APIs and unlike when the ESP8266 was announced, documentation in English.

Right now, Espressif is beta testing the ESP32, with about 200 boards manufactured so far. If you’re one of the few lucky people who have one of these boards on your workbench, we’d love to see your take on it.

Use the Esp As a Serial Adapter

One of the most useful tools in the hardware hackers toolbox is a USB to serial adapter. With this, you can flash new firmware to routers, and ply the vast binary seas of embedded hardware. The common form of the USB to Serial adapter is an FTDI breakout board. This requires drivers, though, and there is actually a simpler – and wireless – solution: the ESP8266 WiFi module.

Despite being the best little IoT device on the block, the ESP8266 was originally designed to be a USB to WiFi adapter. In our haste to build WiFi throwies, WiFi blinkies, and freaking WiFi server farms, we seem to have forgotten that there’s still a use for a device that turns a 3.3V TTL into a WiFi connection. It’s the perfect device for reflashing a cheap WiFI router with new firmware, or just providing you with wireless serial connections to go along with your wireless Internet.

This project uses jeelabs’ ESP-link firmware for the ESP8266. It’s a simple bridge between WiFi and serial, and can function as an AVR programmer in a pinch. The web interface for this firmware is very nice, but you really don’t need it; the entire purpose of this firmware is to be even more transparent than an FTDI USB to serial adapter. For the next time you’re flashing a router with OpenWRT, don’t bother digging out the USB adapter; an ESP is all you need.

WiFi Fob Acquaints OLED with ESP

When you think of WiFi in projects it’s easy to get into the rut of assuming the goal is to add WiFi to something. This particular build actually brings WiFi awareness to you, in terms of sniffing what’s going on with the signals around you and displaying them for instant feedback.

[0miker0] is working on the project as his entry in the Square Inch Project. It’s an adapter board that has a footprint for the 2×4 pin header of an ESP8266-01 module, and hosts the components and solder pads for a 128×64 OLED display. These are becoming rather ubiquitous and it’s not hard to figure out why. They’re relatively inexpensive, low-power, high-contrast, and require very few support components. From the schematic in the GitHub Repo it looks like 5 resistors and 7 caps.

The video below shows off two firmware modes so far. The first is an AP scan that reads out some information, the second is a weather-display program. Anyone who’s worked with the ESP modules knows that they have the potential to gather all kinds of data about WiFi signals — one of our favorite demos of this is when [cnlohr] used it to create a 3d light painted map of his WiFi signal strength. Chuck a rechargeable LiPo on this thing, tweak the example code for your needs, and you have a new gadget for wardriving-nouveau.

Continue reading “WiFi Fob Acquaints OLED with ESP”

Arduino’s Long-Awaited Improved WiFi Shield

Announced at the 2014 Maker Faire in New York, the latest Arduino WiFi shield is finally available. This shield replaces the old Arduino WiFi shield, while providing a few neat features that will come in very handy for the yet-to-be-developed Internet of Things.

While the WiFi Shield 101 was announced a year ago, the feature set was interesting. The new WiFi shield supports 802.11n, and thanks to a few of Atmel’s crypto chip offerings, this shield is the first official Arduino offering to support SSL.

The new Arduino WiFi Shield 101 features an Atmel ATWINC1500 module for 802.11 b/g/n WiFi connectivity. This module, like a dozen or so other WiFi modules, handles the heavy lifting of the WiFi protocol, including TCP and UDP protocols, leaving the rest of the Arduino free to do the actual work. While the addition of 802.11n  will be increasingly appreciated as these networks become more commonplace, the speed offered by ~n isn’t really applicable; you’re not going to be pushing bits out of an Arduino at 300 Mbps.

Also included on the WiFi shield is an ATECC508A CryptoAuthentication chip. This is perhaps the most interesting improvement over the old Arduino WiFi shield, and allows for greater security for the upcoming Internet of Things. WiFi modules already in the space have their own support for SSL, including TI’s CC3200 series of modules, Particle‘s Internet of Things modules, and some support for the ESP8266.

Transparent ESP8266 WiFi-to-Serial Bridge

These days, connecting your microcontroller project to a WiFi network is pretty easy — you connect up an ESP8266 to your microcontroller project and pretend it’s a WiFi modem, using these old-school-style AT commands. But what do you do if you need to flash new code into the microcontroller? You can’t reprogram the micro remotely through the ESP8266 because those stupid AT commands get in the way.

The solution? By flashing the esp-link firmware into your ESP8266, you talk directly to the microcontroller over WiFi as if it were connected by a serial cable: the ESP8266 becomes a totally transparent WiFi-serial bridge. Now, with a serial bootloader and an ESP8266 in Wifi-to-serial bridge mode, you can reflash your microcontroller wirelessly, and then telnet in to interact with and debug the system remotely. Once you’ve fixed the bugs, you can re-flash the microcontroller: all over WiFi, without having to climb up a ladder to reach your IoT attic-temperature sensor.

To flash a connected Arduino, for instance, all you need to do is convince AVRDUDE to use the network instead of a locally-connected USB-serial cable: avrdude -p m328p -c arduino -b 115200 -P net: -U:yourHexFile.hex. The ESP8266 passes the data straight through its TX and RX lines to your microcontroller and everything works as if it were wired.

Configuration to allow the ESP8266 to join your WiFi network takes place on a self-hosted webpage that uses [Sprite_tm]’s esp-httpd standalone server, which makes setup pretty painless. And then after that you can simply telnet to the ESP8266 at port 23 and type away, or do anything else you would with a wired serial connection.

Although the simple bridge mode came first, esp-link looks like it’s growing to be a one-stop shop for all your IoT or microcontroller + WiFi needs. In addition to the serial bridge code, there is also a REST-based microcontroller-to-internet mode and there is bi-directional MQTT support in the wings. We haven’t had a chance to dig into these yet, so if you have, let us know in the comments.

If you want to dig in deeper, head over to [Jeelabs]’ blog for a slightly outdated tour of the project written by the code’s author, [Thorsten von Eicken]. For the most up-to-date development news, follow the very active development of esp-link in this thread on the esp8266 forums.

ESP8266 Web Server Farm

There seems to be a hacker maxim that whatever gadget you are working with, it would be better to have several of them running together. That might explain the ESP8266 web server farm that [Eldon Brown] has built. Yup, a web server farm made from three of everyone’s favorite WiFi dongle, the humble ESP8266.

Eldon’s server farm is currently serving web pages here, running on three ESP8266 boards. Or it was before this posting reduced it to a smoking ruin (screenshot below just in case). Each module is running a dynamic web page and some clever programming he came up with that makes transferring data over these cheap devices quicker.

His page isn’t anything too fancy but it is impressive considering it is running on about $30 worth of hardware, including the breadboard it is wired into. The page includes dynamically-generated graphics and some back-end stuff. I don’t think that it will replace any LAMP servers anytime soon (the ESP8266 took about 2.6 seconds to generate the page below), but it is an impressive hack. [Eldon] has made the full code of the web server that is running the pages available. So, lets add web server farm to the list of things that this neat little device can handle, next to plant weigher, Bitcoin price tracker, MP3 player and many more

Thanks to [PuceBaboon] for the tip!

Continue reading “ESP8266 Web Server Farm”

Save WiFi: Act Now To Save WiFi From The FCC

Right now, the FCC is considering a proposal to require device manufacturers to implement security restricting the flashing of firmware. We posted something about this a few days ago, but completely missed out on a call to action. Contrary to conventional wisdom, we live under a system of participatory government, and there is still time to convince the FCC this regulation would stifle innovation, make us less secure, and set back innovation in the United States decades.

The folks at ThinkPenguin, the EFF, FSF, Software Freedom Law Center, Software Freedom Conservancy, OpenWRT, LibreCMC, Qualcomm, and other have put together the SaveWiFi campaign ( capture, real link is at this overloaded server) providing you instructions on how to submit a formal complaint to the FCC regarding this proposed rule.

Under the rule proposed by the FCC, devices with radios may be required to prevent modifications to firmware. All devices operating in the 5GHz WiFi spectrum will be forced to implement security features to ensure the radios cannot be modified. While prohibiting the modification of transmitters has been a mainstay of FCC regulation for 80 years, the law of unintended consequences will inevitably show up in full force: because of the incredible integration of electronic devices, this proposed regulation may apply to everything from WiFi routers to cell phones. The proposed regulation would specifically ban router firmwares such as DD-WRT, and may go so far as to include custom firmware on your Android smartphone.

A lot is on the line. The freedom to modify devices you own is a concern, but the proposed rules prohibiting new device firmware would do much more damage. The economic impact would be dire, the security implications would be extreme, and emergency preparedness would be greatly hindered by the proposed restrictions on router firmware. The FCC is taking complaints and suggestions until September 8th.

Even if you’re not living under the jurisdiction of the FCC, consider this: manufacturers of routers and other WiFi equipment will not be selling two version of hardware, one to the US and another to the rest of the world. What the FCC regulates affects the entire world, and this proposed rule would do us all a disservice. Even if you’re not in the US, tell your second favorite websites to cover this: neither Ars Technica nor Wired have posted anything on the FCC’s proposed rule, and even boingboing is conspicuously silent on the issue. You may submit a comment until September 8th here.