A boy looking at a small wind turbine

Hackaday Prize 2022: A 3D Printed Portable Wind Turbine For Hikers

If you’re out in the wilderness and off the grid, but still need to charge your phone, the most obvious way to do that is by using a solar panel. Light, flat and without moving parts, they’re easy to store and carry on a hike. But they obviously don’t work in the dark, so what’s a hiker to do if they want to charge their devices at night? If you happen to be in a windy place, then [adriancubas] has the solution for you: a portable wind turbine that folds up to the size of a 2 L soda bottle.

[adrian] designed the turbine to be light and compact enough to take with him on multi-day camping trips. Nearly all parts are 3D printed in PLA, and although ABS or PETG would have been stronger, the current design seems to hold up well in a moderate breeze. The generator core is made from a stepper motor with a bridge rectifier and a capacitor to create a DC output. [adrian] estimates the maximum power output to be around 12 W, which should be more than enough to charge a few beefy power banks overnight.

All parts are available as STL files on [adrian]’s project page, so if you’re looking for some wind power to charge your gadgets on your next camping trip you can go ahead and build one yourself. While we’ve seen large 3D printed wind turbines before, and portable ones for hikers, [adrian]’s clever folding design is a neat step up towards making wind power almost as easy to use as solar power.

Continue reading “Hackaday Prize 2022: A 3D Printed Portable Wind Turbine For Hikers”

Can We Repurpose Old Wind Turbine Blades?

Wind turbines are a fantastic, cheap, renewable source of energy. However, nothing lasts forever, and over time, the blades of wind turbines fatigue and must be replaced. This then raises the question of what to do with these giant waste blades. Thankfully, a variety of projects are exploring just those possibilities.

A Difficult Recycling Problem

Around 85% of a modern wind turbine is recyclable. The problem is that wind turbine blades currently aren’t. The blades last around 20 to 25 years, and are typically made of fiberglass or carbon fiber. Consisting of high-strength fibers set in a resin matrix, these composite materials are incredibly difficult to recycle, as we’ve discussed previously. Unlike metals or plastics, they can’t just be melted down to be recast as fresh material. Couple this with the fact that wind turbine blades are huge, often spanning up to 300 feet long, and the problem gets harder. They’re difficult and expensive to transport and tough to chop up as well.

Continue reading “Can We Repurpose Old Wind Turbine Blades?”

The Simplest Wind Turbine Is The Most Satisfying

Sometimes there’s a satisfaction to be found not in the more complex projects but the simplest ones. We’ve featured wind turbines of all types here at Hackaday over the years, but HowToLou’s one is probably one of the least sophisticated. That notwithstanding, it does its job admirably, and provides a handy reminder of a parts source many of us might have overlooked.

At its heart is a motor from an exercise treadmill, which appears to be quite a powerful DC motor so that’s a source worth noting away for any future projects. To that he attaches the blades from a desk fan, and when placed outdoors on a windy day it generates enough power to run an LED head torch and charge his phone.

Of course, this most basic of wind turbines is not displaying its true potential in the video below the break. Were it mounted in a high position free from ground based wind obstacles it would no doubt catch a lot more wind, and in particular were it hooked up to a charge controller and a battery it could provide a much more useful power source. Then you could start optimizing fan blade designs… But this is a fun project that isn’t trying to masquerade as anything sophisticated, and it still has that potential.

This isn’t the first such simple turbine we’ve brought you.

Continue reading “The Simplest Wind Turbine Is The Most Satisfying”

Wind Turbines And Ice: How They’re Tailored For Specific Climates

Wind turbines are incredible pieces of technology, able to harvest wind energy and deliver it to the power grid without carbon emissions. Their constant development since the first one came online in 1939 mean that the number of megawatts produced per turbine continues to rise as price per megawatt-hour of wind energy continues to fall. Additionally, they can operate in almost any climate to reliably generate energy almost anywhere in the world from Canada to the North Atlantic to parts beyond. While the cold snap that plowed through the American South recently might seem to contradict this fact, in reality the loss of wind power during this weather event is partially a result of tradeoffs made during the design of these specific wind farms (and, of course, the specifics of how Texas operates its power grid, but that’s outside the scope of this article) rather than a failure of the technology itself.

First, building wind turbines on the scale of megawatts isn’t a one-size-fits-all solution. Purchasing a large turbine from a company like GE, Siemens, or Vestas is a lot like buying a car. A make and model are selected first, and then options are selected for these base models. For example, low but consistent wind speeds demand a larger blade that will rotate at a lower speed whereas areas with higher average wind speeds may be able to get by with smaller and less expensive blades for the same amount of energy production. Another common option for turbines is cold weather packages, which include things like heaters for the control systems, hydraulics, and power electronics, additional insulation in certain areas, and de-icing solutions especially for the turbine blades.

In a location like Texas that rarely sees cold temperatures for very long, it’s understandable that the cold weather packages might be omitted to save money during construction (although some smaller heaters are often included in critical areas to reduce condensation or humidity) but also to save on maintenance as well: every part in a wind turbine has to be maintained. Continuing the car analogy, it’s comparable to someone purchasing a vehicle in a cold climate that didn’t come equipped with air conditioning to save money up front, but also to avoid repair costs when the air conditioning eventually breaks. However, there are other side effects beyond cost to be considered when installing equipment that’s designed to improve a turbine’s operation in cold weather.

Let’s dig into the specifics of how wind turbine equipment is selected for a given wind farm.

Continue reading “Wind Turbines And Ice: How They’re Tailored For Specific Climates”

Hackaday Podcast 080: Trucks On A Wire, Seeing Sounds, Flightless Drone, And TEA Laser Strike

Hackaday editors Elliot Williams and Mike Szczys flip through the index of great hacks. This week we learn of a co-existence attack on WiFi and Bluetooth radios called Spectra. The craftsmanship in a pneumatic drone is so awesome we don’t care that it doesn’t fly. Building a powerful TEA laser is partly a lesson in capacitor design. And join us in geeking out at the prospect of big rigs getting their juice from miles of overhead wires.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 080: Trucks On A Wire, Seeing Sounds, Flightless Drone, And TEA Laser Strike”

HAWT Wind Turbine Is Mostly 3D Printed

Wind turbines are a great source of renewable energy, and a great DIY project, too. They can be built with all kinds of materials and the barrier for entry is low for the beginner. [Fab] has built just such a device, taking advantage of modern construction techniques, and dubbed it the WinDIY.

The WinDIY design is mostly 3D printed, with a familiar three-bladed design. The diameter of the rotor is 1.2 m, meaning that braking and regulating the turbine is required for safety in high winds. [Fab] is aiming to achieve this control with a combination of mechanical and electronic braking, as well as variable-pitch blades. The benefit of 3D printing the design is it allows iterations to be made quickly, particularly of parts with complex geometries that would be too time-consuming or expensive to machine otherwise.

[Fab]’s writeup goes into great detail on topics like the design of the pitch control systems and other minutae, which should serve as a great reference for anyone else working on a similar project. If you’re looking for something with more of a sci-fi future vibe, consider attempting a vertical-axis build instead.

3D-Printing Bigger Wind Turbines

Many decades ago, a much younger version of me was in the car with my dad and my brother, cruising down the highway on some errand or another. We were probably all in the front seat, and none of us were wearing seatbelts; those were simpler times. As we passed under an overpass, my dad said, “Do you know why the overpasses on these roads are so high?” Six-year-old me certainly didn’t, but it was clear dad did and had something to say about it, so we just shook our heads and waited for the lesson. “Because that’s how big nuclear missiles are.” He then went into an explanation of how the Interstate Highway System in the USA, then still in its infancy, was designed to make sure the armed forces could move around the country, so overpasses needed to allow trucks with big loads to pass.

It was an interesting lesson at the time, and over the years I’ve continued to be impressed with the foresight and engineering that went into the Interstate system here in the US. It’s far from perfect, of course, and it’s only recently that the specifications for the system have started to put a pinch on things that seem totally unrelated to overpass dimensions — namely, the size and efficiency of wind turbines.

Continue reading “3D-Printing Bigger Wind Turbines”