Hackaday Links: April 6, 2014


Back in September we saw this awesomesauce wristwatch. Well, [Zak] is now kitting it up. Learn more about the current version, or order one. [Thanks Petr]

Home automation is from the future, right? Well at [boltzmann138's] house it’s actually from The Next Generation. His home automation dashboard is based on the LCARS interface; he hit the mark perfectly! Anyone thinking what we’re thinking? This should be entered in the Hackaday Sci-Fi Contest, right? [via Adafruit]

PCB fab can vary greatly depending on board size, number of layers, number of copies, and turn time. PCBShopper will perform a meta-search and let you know what all of your options are. We ran a couple of tests and like what we saw. But we haven’t verified the information is all good so do leave a note about your own experience with the site in the comments below. [via Galactic Studios]

We recently mentioned our own woes about acquiring BeagleBone Black boards. It looks like an authorized clone board is poised to enter the market.

Speaking of the BBB, check out this wireless remote wireless sensor hack which [Chirag Nagpal] is interfacing with the BBB.

We haven’t tried to set up any long-range microwave communications systems. Neither has [Kenneth Finnegan] but that didn’t stop him from giving it a whirl. He’s using Nanobridge M5 hardware to help set up a system for a triathlon happening near him.

Wireless sensors without a microcontroller

While cruising the Internet one day, [Raj] found a really cool pair of RF transmitters and receivers manufactured by Dorji Applied Technology. These modules – the DRF5150S and DRF4432S – work just like any other ISM band transmitter receiver pair with the addition of inputs for analog and digital input pins. [Raj] put together a tutorial for using these radio modules, perfect if you need a very simple wireless connection for your next project.

[Raj]‘s tutorial for using the Dorji sensor modules shows the transmitter has two operating modes. The first mode is a simple data transmitter, connected to a microcontroller through a UART connection. The ‘sensor’ mode doesn’t require a separate chip; the on-board STM8L151 microcontroller reads analog values on two pins and sends them over the air to the DRF4432S receiver module.

After programming the transmitter to function as a wireless sensor with an app released by Dorji, [Raj] plugged the transmitter into a breadboard with a battery and digital thermometer. The receiver module is plugged into a USB -> UART module, and data is pulled down from the sensor in a terminal.

[Raj] wrote a small app in Processing to display the data coming from the sensor. He has a wonderful animated thermometer showing the temperature reading of the sensor, the battery voltage and the strength of the wireless signal. Pretty easy, and a very helpful tutorial if you need an easy way to build a wireless sensor.