Wooden Escalator Fit for a Slinky

Our favorite mechanical master of woodworking, [Matthias Wandel], is at it again, this time making an endless staircase for a Slinky. Making an escalator out of 2×4’s and other lumber bits looks fairly easy when condensed down to a two and a half minute video. In reality a job like this requires lots of cuts, holes, and a ton of planning.

The hard part of this build seemed to be the motor arrangement. There is a sweet spot when it comes to Slinky escalator speeds. Too fast, and you’ll outpace the Slinky. Too slow, and the Slinky flies off the end of the escalator. Keeping the speed in check turned out to be a difficult task with the coarse speed control of a drill trigger. The solution was to ditch the drill and build a simple hand crank mechanism. The Slinky now can cascade down stairs as long as your arm holds out.

Join us after the break for 3 videos, the making of the escalator, a 140 step demonstration video, and a followup video (for geeks like us) explaining where the idea came from, whats wrong with the machine and possible improvements.

Thanks to [Jim Lynch] for the tip

Continue reading “Wooden Escalator Fit for a Slinky”

Building A Dead-On-Accurate Model Ford Pickup From Scratch

In a world filled with 3D printed this and CNC machined that, it’s always nice to see someone who still does things the old-fashioned way. [Headquake137] built a radio controlled truck body (YouTube link) from wood and polystyrene using just a saw, a Dremel, a hobby knife, and a lot of patience. This is one of those builds that blurs the lines between scale model and sculpture. There aren’t too many pickup trucks one might call “iconic” but if we were to compile a list, the 6th generation Ford F-series would be on it. [Headquake137’s] model is based on a 1977 F100.

ford-thumb2The build starts with the slab sides of the truck. The basic outline is cut into a piece of lumber which is then split with a handsaw to create a left and a right side. From there, [Headquake137’s] uses a Dremel to carve away anything that doesn’t look like a 1977 F100. He adds pieces of wood for the roof, hood, tailgate, and the rest of the major body panels. Small details like the grille and instrument panel are created with white polystyrene sheet, an easy to cut material often used by train and car modelers.

When the paint starts going on, the model really comes to life. [Headquake137] weathers the model to look like it’s seen a long life on the farm. The final part of the video covers the test drive of the truck, now mounted to a custom chassis. The chassis is designed for trails and rock crawling, so it’s no speed demon, but it sure does look the part riding trails out in the woods!

[Headquake137] managed to condense what must have been a 60 or 70 hour build down to a 14 minute video found below.

Continue reading “Building A Dead-On-Accurate Model Ford Pickup From Scratch”

Wood & Glue RepStrap Works Surprisingly Well

Even with the cost of 3D Printers continually falling, entering the hobby still requires a significant investment. [Skeat] had some typical 3D Printer components available but didn’t have access to a printer for making the ever-so-common frame parts of typical RepRap designs.

glue rep strap [Skeat’s] plan was to cobble together a printer just good enough to print out parts for another, more robust one. The frame is made from wood, a very inexpensive and available material. The frame is not screwed together and doesn’t have any alignment tabs, it’s just hand cut pieces glued together. Each portion of the frame is laid out, aligned with a carpenter’s square and then glued together. This design and assembly method was intentional as [Skeat] didn’t have access to any precision tools. He stated that the only parts of the frame that had to be somewhat precise were the motor mount holes. The assembly process is well documented to aid anyone else looking to make something similar.

In addition to the wooden frame, all of the components are glued in place. That includes the bearings, rods, limit switches and even the Z axis motor! After seeing the photos of this printer, it would be easy to dismiss it as a poor performer. The below video shows that this printer’s print quality can keep up with any hobby level machine available. We wonder if [Skeat] is rethinking making another since this one works so well.

Continue reading “Wood & Glue RepStrap Works Surprisingly Well”

Hand Drill To Band Saw Conversion

Need a band saw but only have a drill kicking around? That may not be a common problem but if you ever run into it, [Izzy] has got you covered. He’s on a mission to make a drill-powered workshop and in his YouTube video, he shows a small bench top band saw he made that is powered by a corded hand drill.

The main frame is made from doubled up 3/4″ plywood. The saw blade is strung between two wooden wheels. Those wheels have tape applied to their outer diameter to create a crowned roller. That crown keeps the saw blade tracking in the middle of the wheel. The bottom wheel is mounted to an axle that is supported by bearings in the main frame. That axle pokes out the back and is connected to the drill. The top wheel has integrated bearings and ride on a stud mounted to the frame. The blade seems to be pretty tight although there is no noticeable tensioning system.

The video shows that this DIY band saw can cut through 1.5 inch wood fairly easily. Even so, there are clearly some needed features, like guide bearings for the blade and an overall cover to prevent accidental lacerations. But we suppose, even professional saws can be dangerous if not treated with respect.

New Cable-Based Vise Improves Woodworking Workshop

We are all aware of the typical wood shop vice, the type that is mounted underneath the workbench and takes forever to open and close by continuously spinning a large handle. These vises normally only open several inches due to the length of the operating screw. They are also not very wide because a cantilevered wide jaw would provide less force the further away it is from the center-mounted operating screw.

Cable ViseWood worker [Andrew] wanted a very versatile and large vise for his shop. It needed to be wide, provide equal clamping force along the jaw and be able to hold very thick objects as well. One more thing, he wanted it to have a quick release clamping system so there would be none of that continuous handle spinning nonsense.

Spoiler Alert: [Andrew] did it! The end product is great but the interesting part is the journey he had taken along the way. There were 4 revisions to the design, each one making the vise just a bit better.

Continue reading “New Cable-Based Vise Improves Woodworking Workshop”

Smarter-than-wood Saw Blade Makes Perfect Foldable Joints

[Andrew Klein] knows the pain of building drawers from plywood. It can be a pain to get all of the pieces measured and cut just right. Then you have to line them up, glue them together, and clamp them perfectly. It’s time-consuming and frustrating. Then one day it hit him that he might be able to make the whole process much easier using a custom saw blade.

The the video below, [Andrew] does a great job explaining how the concept works using a piece of paper. The trick is that the plywood must be cut in a very specific shape. This shape results in the plywood just barely being held together, almost as if it’s hinged. The resulting groove can then be filled with wood glue, and the plywood is folded over on itself. This folding process leaves no gaps in the wood and results in a strong joint. Luckily this special shape can be cut with a specialized saw blade.

This new process removes the requirement of having five separate pieces for a drawer. Instead, only four cuts are needed on a single piece of square plywood. The corners are then removed with a razor blade and all four sides are folded up and into place. [Andrew] shows that his prototype blade needs a little bit of work, but he’s so hopeful that this new invention will be useful to others. Continue reading “Smarter-than-wood Saw Blade Makes Perfect Foldable Joints”

MRRF: (not quite) Chocolate Clock

[Jason] is a woodworker. At least, he was until he saw his first 3D printer. While he may still work in wood, he particularly likes adapting scroll saw patterns for 3D printing. His clock started as a woodworking pattern for use on a scroll saw. To adapt it for 3D printing, [Jason] scanned the plotter-sized pattern pieces into Inkscape, where he was able to do things like add bevels before sending the pieces to OpenSCAD.

tall chococlockAs you might imagine, a great deal of work went into this build, beginning with the scanning. [Jason] starting scanning last October and finished in January. Printing started January 9th, and he told me the final pieces were printed early this morning. We know you want all the details, so here goes: this build took just over six rolls of PLA at 20% infill. It’s 48″ tall and about 24″ wide. It was printed on what [Jason] referred to as his “very modified” Replicator 2. He glued the pieces together with Testor’s, and that took about 30 hours. All through the project, he kept meticulous notes in a spreadsheet of print times and filament used.

We were honored to be among the first to see [Jason]’s incredible clock build at this year’s Midwest RepRap Festival. He would like to take it on tour this year to the nearby Maker Faires. If he can figure out how transport it safely, he’d like to show it at World Maker Faire in NYC.