A man standing next to a log holds a wooden mallet and a grey froe with a wooden handle. The froe's long straight blade sits atop the end of the log. Several cuts radiate out from the center of the log going through the length of the wood.

Making Wooden Shingles With Hand Tools

While they have mostly been replaced with other roofing technologies, wooden shingles have a certain rustic charm. If you’re curious about how to make them by hand, [Harry Rogers] takes us through his friend [John] making some.

There are two primary means of splitting a log for making shingles (or shakes). The first is radial, like one would cut a pie, and the other is lateral, with all the cuts in the same orientation. Using a froe, the log is split in progressively smaller halves to control the way the grain splits down the length of the log and minimize waste. Larger logs result in less waste and lend themselves to the radial method, while smaller logs must be cut laterally. Laterally cut shingles have a higher propensity for warping and other issues, but will work when larger logs are not available.

Once the pieces are split out of the log, they are trimmed with an axe, including removing the outer sapwood which is the main attractant for bugs and other creatures that might try eating your roof. Once down to approximately the right dimensions, the shingle is then smoothed out on a shave horse with a draw knife. Interestingly, the hand-made shingles have a longer lifespan than those sawn since the process works more with the grain of the wood and introduces fewer opportunities for water to seep into the shingles.

If you’re looking for something more solarpunk and less cottagecore for your house, maybe try a green solar roof, and if you’ve got a glass roof, try cleaning it with the Grawler.

Continue reading “Making Wooden Shingles With Hand Tools”

A large, short set of tree stumps supports many smaller, straight trees atop them. They are on a picturesque mountain with a orange deciduous tree behind them.

Daisugi – Growing Straight Lumber Without Killing The Tree

In 14th Century Japan, there was a shortage of straight lumber for building and flat land on which to grow it. Arborists there developed a technique that looks like growing trees on top of trees, called daisugi.

Similar to the European practice of pollarding for firewood and basket materials, daisugi has been likened to bonsai on steroids. Starting with a Japanese cedar tree, one chops the top off the tree once it has grown to sufficient size to survive this initial shock. The following spring, you start carefully guiding the new growth through pruning to create tall, straight trunks on top of the “platform cedar.” Pruning takes place approximately every two years and harvesting every twenty. A daisugi tree can produce new shoots for several hundred years if properly maintained.

Although often used as a decorative technique today, it seems like an interesting way to grow your own perfect lumber if you have the room for it. We suspect the technique could be used on other species that lend themselves to pollarding like oak or maple, but harvest times and reliable straight trunks might vary. With sustainable production of wood for cross-laminated timber (CLT) and other advanced timbers being of growing importance, we wonder if these techniques could make a comeback?

Continue reading “Daisugi – Growing Straight Lumber Without Killing The Tree”

Design Secrets Of Fantastic, Hand-made Puzzle Boxes

[Kagen Sound] is a woodworker and artist who gives a great behind-the-scenes look at his amazingly high-quality puzzle boxes (video). Not only do his varied puzzle box designs show his math background, but they are all made entirely of wood. There are no nails or fasteners; just intricately-fitted wood and some glue.

There’s a lot of variety in his designs, and while it’s all fantastic from beginning to end, two things stood out to us as being of particular interest. One is the “Plus Box” which makes a clicking sound when the pieces are moved (at 2:47) thanks to a clever wooden spring. [Kagen] shows an example of the concept, where a flat wood piece with slots cut from the sides acts as a spring and clicks into notches when moved, providing audible and tactile feedback without anything other than wood.

The other is a patterned puzzle box (at 7:10) whose geometric designs change as the user moves the pieces. A reminder that [Kagen]’s devices are made entirely of wood and glue, so the design comes from two different types of wood assembled and cut at an angle to create the patterns seen. [Kagen] shaves thin layers of veneer from this block to attach to the puzzle pieces as needed to create the patterns without resorting to ink, paint, or decals.

[Kagen] has a math degree but is entirely self-taught as a woodworker, so don’t let lack of formal training stop you from experimenting. You can watch him give a tour of his work in the video, embedded below.

Feeling the urge to make your own puzzle boxes? Take a look at some we’ve seen over the years, and we even have a collection of single-line cryptex fonts to make laser-engraving puzzle bits a little easier.

Continue reading “Design Secrets Of Fantastic, Hand-made Puzzle Boxes”

Printed Centrifugal Dust Separator Stays On Budget

Anyone who’s ever spent time in a woodworking shop knows how much dust is produced when cutting, sanding, and so on. [Tim] of Pilson Guitars was looking to outfit his shop with centrifugal dust separators to combat the problem, which are supposed to remove over 99% of the sawdust particles right out of the air. Unfortunately, they can cost thousands of dollars. So he decided to try making his own.

Centrifugal dust separator design, by Tim at Pilson Guitars.
Centrifugal dust separator design, by Tim at Pilson Guitars.

Using a clear PVC tube and 100 hours of printing on his Prusa i3 MK3, his CAD file had come to life, ready to use the power of centrifugal air to leave just enough fine dust in the output port to have a HEPA filter handle the remainder. Unfortunately, initial testing showed that a single dust separator filtered out far less than 90%, and even adding a second unit bumped that up to only 94.2%. Still impressive, but this would clog up a HEPA filter in no time. Thus [Tim] had a second try at it, after a range of helpful comments to the first video.

Changes included a different design for the impeller blades to improve the vortex, as well as attempting to run the system in series. Sadly more issues cropped up, with apparently the air also seeking a way via the collection bins that has [Tim] rethinking more aspects of the design. He has made the design files (STEP and more) available on GitHub for perusal by the community and hopefully some constructive input on how to DIY such dust separation system.

Over the years, we’ve seen many different approaches to the problem of dust collection. We’ve covered other 3D printed solutions if your printer is looking for something to do, but if you’d prefer something a little more low-tech, this traffic cone dust separator is particularly clever.

Continue reading “Printed Centrifugal Dust Separator Stays On Budget”

Hidden Wall-Mount Table Looks Like Hanging Art

If you live in a compact space, sometimes you have to get creative with your furniture to make the most of it. This wall-hanging table design from [diyhuntress] is perfect for those situations where you need a table, but you don’t want it taking up the whole room when it’s not in use. Plus, it’s kinda stealthy, which makes it even more fun!

The table is a folding design, with a flat wooden top, and an equally-sized supporting leg that goes down to the ground. The other end of the table is supported by a frame on the wall, which also contains several shelves for small objects. The trick is that the table top and support are hinged together, so that they can fold up and sit in front of the shelves, essentially hanging the whole assembly from the wall. Even better, by painting a simple artwork on the support, the whole thing just looks like a decor piece with no clue as to its hidden functionality.

It’s a fun build, and one that you could easily knock out in a weekend with some basic woodworking skills. We’ve featured some other nifty shelf designs before, too. Just remember, too – a neat and tidy space is a boost to your hacker productivity, so don’t rule this out for your own use!

Continue reading “Hidden Wall-Mount Table Looks Like Hanging Art”

Man playing custom zither made with a laser cutter.

Laser Cut Zither Instrument Kicks It Old World Style

Learning to play an instrument takes a certain level of dedication — and you can add another layer of dedication on top of that when it’s an instrument not found at your local Guitar Center. But it’s an entirely new level of dedication when someone crafts the instrument from scratch. If you’re looking for an example, check out this custom wooden zither [Nicolas Bras] built from laser cut parts.

The basic design of the instrument utilizes the sloted interlocking edges that are then glued together in lieu of traditional fasteners. Standard sized guitar tuning pegs and the accompanying steel guitar strings were then strung across two laser-cut bridges held in place by the string tension alone. The project began as way for [Nicolas] to learn the capabilities of his newly acquired laser cutter, but he himself is no amateur when it comes to constructing one-of-a-kind musical instruments. Just last year, he created a zither with bungee cords from the hardware store.

Zithers are German in origin, though some of the earliest zither-like instruments date back to 400 BCE China. The laser cut version [Nicolas] created had five strings to hammer on, though the type used in classical music arrangements typically contain upwards of thirty strings. The zither family of instruments may have given way to the electric guitars of today — it’s always neat to see new tech leveraged to embrace some old world charm.

For more on the art of DIY music production, check out this post on myriad of DIY musical instrument builds all played in concert.

Continue reading “Laser Cut Zither Instrument Kicks It Old World Style”

This Laser-Cut One-Piece Wedge Tenon Locks Wood Joints Tight

Woodworkers have always been very clever about making strong and attractive joints — think of the strength of a mortise and tenon, or the artistry of a well-made dovetail. These joints have been around for ages and can be executed with nothing more than chisels and a hand saw, plus a lot of practice, of course. But new tools bring new challenges and new opportunities in joinery, like this interesting “hammer joint” that can be made with a laser cutter.

This interesting joint comes to us from [Jiskar Schmitz], who designed it for quick, solid, joints without the need for glue or fasteners. It’s a variation on a wedged mortise and tenon joint, which strengthens the standard version of the joint by using a wedge to expand the tenon outward to make firm contact with the walls of the tenon.

The hammer joint takes advantage of the thin kerf of a laser cutter and its ability to make blind cuts to produce a tenon with a built-in wedge. The wedge is attached to a slot in the tenon by a couple of thin connectors and stands proud of the top of the tenon. The tenon is inserted into a through-hole mortise, and a firm hammer blow on the wedge breaks it free and drives it into the slot. This expands the tenon and locks it tightly into the mortise, creating a fairly bulletproof joint. The video below tells the tale.

While the hammer joint seems mainly aimed at birch plywood, [Jiskar] mentions testing it in other materials, such as bamboo, MDF, and even acrylic, although wood seems to be the best application. [Jiskar] also mentions a potential improvement: the addition of a ratchet and pawl shape between the wedge and the slot in the tenon, which might serve to lock the wedge down and prevent it from backing out.

Continue reading “This Laser-Cut One-Piece Wedge Tenon Locks Wood Joints Tight”