A Smart Table For Gamers

When makers take to designing furniture for their own home, the results are spectacular. For their senior design project, [Phillip Murphy] and his teammates set about building a smart table from the ground up. Oh, and you can also use it to play games, demonstrated in the video below.

The table uses 512 WS2812 pixels in a 32 x 16 array which has enough resolution to play a selection of integrated games — Go, 2-player Tetris, and Tron light cycle combat — as well as some other features like a dancing bird party mode — because what’s the point of having a smart table if it can’t also double as rave lighting?

A C2000-family microcontroller on a custom board is the brains, and is controlled by an Android app via Bluetooth RN-42 modules. The table frame was designed in Sketchup, laser-cut, and painstakingly stained. [Murphy] and company used aluminum ducting tape in each of the ‘pixels’, and the table’s frame actually forms the pixel grid. Check out the overview and some of the games in action after the break.

Continue reading “A Smart Table For Gamers”

A LED Strip Clock As Linear As Time

We love custom clocks here at Hackaday, and are always thrilled to see each inventive means of time-keeping. In a seldom-seen take on the familiar device, the [Bastel Brothers]’s LED Strip Clock’s sleek profile finds itself in good company.

The clock is a two-metre strip of 60 LEDs; every minute past the current hour corresponds to one lit LED, every fifth LED is turned to red in order to make reading minutes easier. So 3 red LEDs +3 green LEDs=18 minutes, with the hour marked by a third color. Sounds complex, but the [Brothers] are quick to say you get used to it quickly, especially when the 6 o’clock LED is centered at some noticeable object or feature.

Continue reading “A LED Strip Clock As Linear As Time”

Ask Hackaday: What About the Diffusers?

Blinky LED projects: we just can’t get enough of them. But anyone who’s stared a WS2812 straight in the face knows that the secret sauce that takes a good LED project and makes it great is the diffuser. Without a diffuser, colors don’t blend and LEDs are just tiny, blinding points of light. The ideal diffuser scrambles the photons around and spreads them out between LED and your eye, so that you can’t tell exactly where they originated.

We’re going to try to pay the diffuser its due, and hopefully you’ll get some inspiration for your next project from scrolling through what we found. But this is an “Ask Hacakday”, so here’s the question up front: what awesome LED diffusion tricks are we missing, what’s your favorite, and why?

Continue reading “Ask Hackaday: What About the Diffusers?”

Interactive Board Prompts Moves for Checkers and Chess

In terms of equipment, chess and checkers are simple games — just a handful of pieces and a checkered gameboard. The simplicity belies the underlying complexity of the games, though, and goes a long way toward explaining their popularity over the millennia.

Increasing the complexity with an interactive game board for chess and checkers might seem counterintuitive, then. But [Bogdan Berg]’s project aims to not only teach checkers and chess but to make games a little more exciting and engaging. Looking a little like a tabletop version of the interactive dance floors we’ve been seeing a lot of lately, the board is built from laser-cut acrylic with plywood dividers to isolate all 64 squares. Neopixels and Hall-effect sensors are mounted to custom PCBs that stretch the length of a row and are wired to an Arduino Mega with lots of IO. Game pieces are colorful fridge magnets. [Bogdan]’s current program supports checkers and keeps track of where the pieces have been moved relative to their starting position and prompts users with possible legal moves.

[Bogdan]’s board already looks like a lot of fun in the video below, and we like the quality of the build and the unobtrusive nature of the interactivity. When he gets around to implementing chess, though, he might want something fancier than fridge magnets for game pieces.

Continue reading “Interactive Board Prompts Moves for Checkers and Chess”

Build Your Own Animated Turn Signals

Automotive lighting used to be strictly controlled, particularly in the United States — anyone remember sealed beam headlamps? These days, pretty much anything goes. You can even have an animated turn signal, because a simple flash isn’t fancy enough these days. You can get a scanning-LED turn signal on your new model Audi, among others. [Shravan] wanted this on their Mazda and set about building an animated turn signal and daytime running lights setup for their car.

It’s not a complicated build by any means; an off-the-shelf WS2812B strip provides the blinkums, an Arduino Nano the smarts. Using a modified library to drive the LEDs allowed [Shravan] to get things running with a minimum of fuss. We’d love to see a little more of the gritty reality of this build — how the Nano is getting directional signals from the car, and how it’s all wired up and bolted on. When you’re installing custom hardware onto a vehicle, the devil really is in the details. It’s supremely difficult to create something that looks tidy and functions well.

It’s amazing to think about how far we’ve come. When high-brightness LEDs first came on to the market in the 1990s, you would have been on the hook for wiring your own loom to connect the 20+ LEDs, building your own driver circuitry, and likely etching a custom PCB — all the while you programmed a PIC in assembly as it dangled off a parallel-port programmer. But then again, our cave-dwelling ancestors didn’t even have matches. Time marches on. Use today’s technology to build the very best things you can.

We love seeing car mods, particularly those that are well executed. Check out [Dave]’s interior lighting mods to the Nissan Juke — a car this writer has weighty opinions about. Video after the break.

Continue reading “Build Your Own Animated Turn Signals”

The Smartest Smart Watch is the One You Make Yourself

If you’re building a smart watch these days (yawn!), you’ve got to have some special sauce to impress the jaded Hackaday community. [Dominic]’s NeoPixel SmartWatch delivers, with his own take on what’s important to have on your wrist, and just as importantly, what isn’t.

There’s no fancy screen. Instead, the watch gets by with a ring of NeoPixels for all its notification needs. But notification is what it does right. It tells [Dominic] when he’s got an incoming call of course, but also has different flashing color modes for SMS, Snapchat, and e-mail. Oh yeah, and it tells time and even has a flashlight mode. Great functionality for a minimalistic display.

But that’s not all! It’s also got a light sensor that works from the UV all the way down to IR. At the moment, it’s being used to automatically adjust the LED brightness and to display current UV levels. (We imagine turning this into a sunburn alarm mode.) Also planned is a TV-B-Gone style IR transmitter.

The hardware is the tough part of this build, and [Dominic] ended up using a custom PCB to help in cramming so many off-the-shelf modules into a tiny space. Making it look good is icing on the cake.

Thanks [Marcello] for the tip!

Continue reading “The Smartest Smart Watch is the One You Make Yourself”

NeoJoints Make WS2812 LEDs Even More Fun

What’s more fun than individually addressable RGB LEDs? Many, many individually addressable RGB LEDs. What’s more fun than all the miscellaneous soldering involved in connecting many of these cheap and cheerful strips together? Well, basically anything. But in particular, these little widgets that [todbot] designed help make connecting up strips of RGB LEDs a snap.

[todbot]’s connectors aren’t particularly groundbreaking, but they’re one of those things that you need the moment you first lay eyes on them. And they’re a testament to rapid prototyping: the mounting holes and improved routing patterns evolved as [todbot] made some, soldered them up, mounted them, and then made some more. We’d like to see some odd angles, of course, but that shouldn’t be too hard to arrange. Everything is up on GitHub, so you can go check it out.

Of course, necessity is the mother of invention, and she’s got many kids. Which is to say that we’ve seen a variation of this hack before precisely because other folks have stared at this matrix-of-strips problem before and come up with similar solutions. Still, we really like the mounting holes and overall aesthetic of [todbot]’s solution, and if you ever find yourself joining WS2812 strips together, give it a try.