Robot + Trumpet = Sad Trombone.mp3

[Uri Shaked] is really into Latin music. When his interest crescendoed, he bought a trumpet in order to make some energetic tunes of his own. His enthusiasm flagged a bit when he realized just how hard it is to get reliably trumpet-like sounds out of the thing, but he wasn’t about to give up altogether. Geekcon 2018 was approaching, so he thought, why not make a robot that can play the trumpet for me?

He scoured the internet and found that someone else had taken pains 20 years ago to imitate embouchure with a pair of latex lips (think rubber glove fingers filled with water). Another soul had written about measuring air flow with regard to brass instruments. Armed with this info, [Uri] and partners [Ariella] and [Avi] spent a few hours messing around with air pumps, latex, and water and came up with a proof of concept that sounds like—and [Uri]’s description is spot-on—a broken robotic didgeridoo. It worked, but the sound was choppy.

Fast forward to Geekcon. In a flash of brilliance, [Avi] thought to add capacitance to the equation. He suggested that they use a plastic box as a buffer for air, and it worked. [Ariella] 3D printed some fingers to actuate the valves, but the team ultimately ended up with wooden fingers driven by servos. The robo-trumpet setup lasted just long enough to get a video, and then a servo promptly burned out. Wah wahhhh. Purse your lips and check it out after the break.

If [Uri] ever gets fed up with the thing, he could always turn it into a game controller a la Trumpet Hero.

Continue reading “Robot + Trumpet = Sad Trombone.mp3”

This Is How The Fonz Would Play MP3s

Here at Hackaday, we love to see old hardware treated with respect. A lovingly restored radio or TV that’s part of our electronic heritage is a joy to behold, and while we understand the desire to stream media from a funky retro case, it really grates when someone throws away the original guts to make room for new electronics.

Luckily, this Seeburg jukebox wall remote repurposing is not one of those projects. [Scott M. Baker] seems to have an appreciation for the finer things, and when he scored this classic piece of Mid-Century Americana, he knew just what to do. These remotes were situated around diners and other hangouts in the 50s and 60s and allowed patrons to cue up some music without ever leaving their seats. They were real money makers back in the day, and companies put a lot of effort into making them robust and reliable.

[Scott]’s first video below shows the teardown of this unit; you can practically smell the old transformer and motor windings. His goal in the second video was to use the remote to control his Raspberry Pi jukebox; he wisely decided to leave everything intact and use the original electromechanically generated pulses to make selections. His analysis led to a nicely executed shield for his Pi which conditions the pulses and imitates coin drops; happily, the coin mechanism still works too, so you can still drop a quarter for a tune.

The remote is working well now, but [Scott] still needs to finish up a few odds and ends to bring this one home. But we love the look and the respect for tradition here, as we did when this juke got a Raspberry Pi upgrade to imitate a missing wall remote.

Continue reading “This Is How The Fonz Would Play MP3s”

Ask Hackaday: How On Earth Can A 2004 MP3 Player Read An SDXC Card?

What were you doing in 2004? Can you even remember 2004? Maybe it’s like the old joke about the 1960s, if you can remember it, you weren’t really there, man. Cast your mind back, [Lance Armstrong] was winning the Tour de France, and SpaceShipOne made it into space.

[Gregg Eshelman], wrote to us to say that in 2004 he bought an MP3 player. Ask your parents about them, they were what hipsters used before they had cassette tapes: portable music players that everyone thought were really cool back then, onto which music didn’t come from the Internet but had to be manually loaded from a computer.

Jokes about slightly outdated consumer electronics aside, [Gregg]’s player, a GPX MW3836, turned out to be a really good buy. Not only does it still work, it packs an unexpected bonus, it reads 64Gb SD cards when they are formatted as FAT32. This might not seem like a big deal at a cursory glance, but it’s worth considering a little SD card history.

Back when the GPX was made, the maximum capacity of an SD card was 2Gb, a figure that must have seemed huge when the standard was created, but by the middle of the last decade was starting to look a little cramped. The GPX player is designed to only read these original 2Gb cards. In the years since then there have been a couple of revisions to the standard, SDHC, and SDXC, which have given us the huge cards we are used to today. Many other devices from the 2Gb SD era, made before SDHC and SDXC existed, cannot read the modern cards, yet [Gregg]’s GPX can.

Hackaday’s readership constantly amaze us with the sheer breadth of their knowledge and expertise, so we are sure that among you reading this piece will be experts on SD card standards who can shed some light on this mystery. Why can a player designed for the original SD card standard read the much newer cards when other contemporary ones can not? [Gregg] would love to know, and now our curiosity has been whetted, so would we.

If you think you’ve heard [Gregg]’s name before, it might be for his expertise in resin casting automotive parts.

SD card image: Andreas Frank (CC BY 2.5).

Patents On MP3 Format Due To Expire

MP3 took off in the late 90s as the digital music format. It then proceeded to slaughter the CD, and launch the file sharing revolution as well. It’s a proud format that has roots stretching all the way back to the early 1980s, when the possibility of sending music over ISDN lines was first considered. Now the patents on it are beginning to expire and its licencing program has been terminated.

The MP3 standard was the property of Fraunhofer IIS, and the original licencing model was intended such that encoders would be expensive, and decoders relatively inexpensive. This would allow people to buy software to listen to MP3s cheaply, but the creation of MP3s would be expensive, and thus handled by studios and music labels. This all changed when a high-quality MP3 encoder was leaked to the public, and suddenly it became possible to readily convert your CDs at home into the MP3 format.

One hangover of this ownership of the MP3 standard was that when you installed certain FOSS software, such as Audacity or a Linux distro, you would find that you had to go and do some legwork to find an MP3 codec. That was because it wasn’t worth the legal trouble for the FOSS authors to arrange a workaround, and trading in proprietary software is the antithesis to everything they stand for.

However, now that more of the relevant patents are expiring, you can now expect MP3 support to be baked into more software. It may be more than a little late, with more advanced audio formats beginning to take over, but it’s great to know that Fedora, for one, is starting to include MP3 support with their releases.

If you’d like to read more about the history of the MP3, check out this great article from NPR. Fraunhofer have their own great history site, too. If all this talk of advanced audio formats has gotten you excited, check out this MP3 decoder written for the ESP8266.

[Thanks to Tim Trzepacz for the tip!]

Sansa MP3 Player Runs Doom Unplayably

DOOM, is there anything it won’t run on? Yes. Your front lawn cannot currently play DOOM. Pretty much everything else can though. It’s a testament to the game’s impact on society that it gets ported to virtually every platform with buttons and a graphical screen.

This video shows a Sansa Clip playing DOOM, but it’s only just barely recognizable. The Sansa Clip has a single color screen, with yellow pixels at the top and grey for the rest of the screen. The monochrome display makes things hard to see, so a dithering technique is used to try and make things more visible. Unfortunately it’s not particularly effective, and it’s difficult to make out little more than the gun at the bottom of the screen.

Continue reading “Sansa MP3 Player Runs Doom Unplayably”

MP3 Player And Handheld GPS Is An Odd Combo Work Of Art

We think [Brek Martin] set out to build a handheld GPS and ended up adding an mp3 Player to it. Regardless, it’s beautifully constructed. Hand built circuit boards and even a custom antenna adorn this impressive build.

The core of the build is a 16 bit microcontroller a dsPIC33FJ128GP802 from Microchip. It’s a humble chip to be doing so much. It uses a UBlox NEO-6M positioning module for the location and a custom built QFH antenna built after calculations done with an online calculator for the GPS half. The audio half is based around a VLSI VS1003b decoder chip.

The whole build is done with protoboard. Where the built in traces didn’t suffice enamel and wire wrap wire were carefully routed and soldered in place. There’s a 48pin LQFP package chip soldered dead bug style that’s impressive to behold.  You can see some good pictures in this small gallery below.

Continue reading “MP3 Player And Handheld GPS Is An Odd Combo Work Of Art”

Synchronize Data With Audio From A $2 MP3 Player

Many of the hacks featured here are complex feats of ingenuity that you might expect to have emerged from a space-age laboratory rather than a hacker’s bench. Impressive stuff, but on the other side of the coin the essence of a good hack is often just a simple and elegant way of solving a technical problem using clever lateral thinking.

Take this project from [drtune], he needed to synchronize some lighting to an audio stream from an MP3 player and wanted to store his lighting control on the same SD card as his MP3 file. Sadly his serial-controlled MP3 player module would only play audio data from the card and he couldn’t read a data file from it, so there seemed to be no easy way forward.

His solution was simple: realizing that the module has a stereo DAC but a mono amplifier he encoded the data as an audio FSK stream similar to that used by modems back in the day, and applied it to one channel of his stereo MP3 file. He could then play the music from his first channel and digitize the FSK data on the other before applying it to a software modem to retrieve its information.

There was a small snag though, the MP3 player summed both channels before supplying audio to its amplifier. Not a huge problem to overcome, a bit of detective work in the device datasheet allowed him to identify the resistor network doing the mixing and he removed the component for the data channel.

He’s posted full details of the system in the video below the break, complete with waveforms and gratuitous playback of audio FSK data.

Continue reading “Synchronize Data With Audio From A $2 MP3 Player”