DIY Telescope Uses Maker Tools

You’ve got a laser cutter. You’ve got a 3D printer. What do you make? [Ayushmaan45] suggests a telescope. The modest instrument isn’t going to do serious astronomy with only 8X worth of optics, but it would make a fine spyglass for a youngster.

The body is cut from MDF, and there are only a few 3D printed parts. The only other things you need are rubber bands and a pair of lenses. You don’t even need glue. We might have spray painted the inside of the scope black or used some black contact paper to cut down on reflections, although it probably wouldn’t make much difference.

Of course, depending on your lenses, you may have to make some changes. Or find new lenses, for that matter. We like that it doesn’t take any exotic parts. We also appreciate that it is easy for kids to take apart and put back together. It would be interesting to see how a motivated kid might alter the design, as well.

If a kid gets interested, you could move on to a more sophisticated telescope. Or maybe you’d prefer a nice microscope.

Raytracing makes the design easier, but the building is still as tricky as ever.

A 10″ Telescope, Because You Only Live Once

Why build a telescope? YOLO, as the kids say. Having decided that, one must decide what type of far-seer one will construct. For his 10″ reflector, [Carl Anderson] once again said “Yolo”— this time not as a slogan, but in reference to a little-known type of reflecting telescope.

Telescope or sci-fi laser gun? YOLO, just try it.

The Yolo-pattern telescope was proposed by [Art Leonard] back in the 1960s, and was apparently named for a county in California. It differs from the standard Newtonian reflector in that it uses two concave spherical mirrors of very long radius to produce a light path with no obstructions. (This differs from the similar Schiefspiegler that uses a convex secondary.) The Yolo never caught on, in part because of the need to stretch the primary mirror in a warping rig to correct for coma and astigmatism.

[Carl] doesn’t bother with that, instead using modern techniques to precisely calculate and grind the required toric profile into the mirror. Grinding and polishing was done on motorized jigs [Carl] built, save for the very final polishing. (A quick demo video of the polishing machine is embedded below.)

The body of the telescope is a wooden truss, sheathed in plywood. Three-point mirror mounts alowed for the final adjustment. [Carl] seems to prefer observing by eye to astrophotography, as there are no photos through the telescope. Of course, an astrophotographer probably would not have built an F/15 (yes, fifteen) telescope to begin with. The view through the eyepiece on the rear end must be astounding.

If you’re inspired to spend your one life scratch-building a telescope, but want something more conventional, check out this comprehensive guide. You can go bit more modern with 3D printed parts, but you probably don’t want to try spin-casting resin mirrors. Or maybe you do: YOLO!

Continue reading “A 10″ Telescope, Because You Only Live Once”

telescope mount

DIY Telescope Mount For Stellar Tracking

Pointing at stars may seem easy on the surface—just mount a telescope to a tripod and you’re done, right? As anyone who’s spent time with a telescope can tell you, it’s not that simple, given that the Earth is always spinning. [Sven] set out to make his own mount to compensate for the rotation of the Earth, which led to some pretty amazing results.

In this project, [Sven] designed a GoTo mount, which is a telescope equatorial mount capable of being pointed at specific parts of the sky and tracking them to allow for long-exposure photos with minimal blur due to the Earth’s movement. He first went down the path of finding the correct harmonic gearbox for the steppers used. A harmonic drive system would allow smooth, precise movement without backlash, and the 100:1 stepdown would provide for the slightest of adjustments.

The steppers are controlled by a custom PCB [Sven] designed around an ESP32-S3. The first PCB had a mistake in the power delivery circuit. After a small tweak, V2 boards arrived and work great. The PCB runs OnStepX, a great open-source project centered around pointing telescopes, cutting down a lot of the software workload on this project.

After all the work put in, you may be wondering how well it works. [Sven] was able to get a pointing accuracy of 1-2 arcseconds from his mount. To get an idea of how great that is, 1 arcsecond is about the same as pointing at a penny from 4 km (2.5 miles) away. Fantastic results, [Sven], and thank you for sending in this great project—be sure to head over to his site and read all the details of this impressive build. If you found this interesting, be sure to check out some of our other telescope-related projects.

Build Your Own Telescope The Modern Way

When we were kids, it was a rite of passage to read the newly arrived Edmund catalog and dream of building our own telescope. One of our friends lived near a University, and they even had a summer program that would help you measure your mirrors and ensure you had a successful build. But most of us never ground mirrors from glass blanks and did all the other arcane steps required to make a working telescope. However, [La3emedimension] wants to tempt us again with a 3D-printable telescope kit.

Before you fire up the 3D printer, be aware that PLA is not recommended, and, of course, you are going to need some extra parts. There is supposed to be a README with a bill of parts, but we didn’t see it. However, there is a support page in French and a Discord server, so we have no doubt it can be found.

Continue reading “Build Your Own Telescope The Modern Way”

Spin-Casting This Telescope Mirror In Resin Didn’t Go To Plan

For most of us, mirrors are something we buy instead of build. However, [Unnecessary Automation] wanted to craft mirrors of his own for a custom telescope build. As it turns out, producing optically-useful mirrors is not exactly easy.

For the telescope build in question, [Unnecessary Automation] needed a concave mirror. Trying to get that sort of shape with glass can be difficult. However, there’s such a thing as a “liquid mirror” where spinning fluid forms into a parabolic-like shape. Thus came the idea to spin liquid resin during curing to try and create a mirror with the right shape.

That didn’t quite work, but it inspired a more advanced setup where a spinning bowl and dense glycerine fluid was used to craft a silicone mold with a convex shape. This could then be used to produce a resin-based mirror in a relatively stationary fashion. From there, it was just necessary to plate a shiny metal layer on to the final part to create the mirror effect. Unfortunately, the end result was too messy to use as a viable telescope mirror, but we learn a lot about what didn’t work along the way.

The video is a great journey of trial and error. Sometimes, figuring out how to do something is the fun part of a project, even if you don’t always succeed. If you’ve got ideas on how to successfully spin cast a quality mirror, drop them in the comments below. We’ve seen others explore mirror making techniques before, too.

Continue reading “Spin-Casting This Telescope Mirror In Resin Didn’t Go To Plan”

DIY Solar Generator Inspired By James Webb Telescope

If you look at this solar generator from [Concept Crafted Creations], you might think it’s somehow familiar. That’s because the design was visually inspired by the James Webb Space Telescope, or JWST. Ultimately, though, it’s purpose is quite different—it’s designed to use mirrors to collect and harness solar energy. It’s not quite there yet, but it’s an interesting exploration of an eye-catching solar thermal generator.

To get that JWST look, the build has 18 mirrors assembled on a 3D printed frame to approximate the shape of a larger parabolic reflector. The mirrors focus all the sunlight such that it winds up heating water passing through an aluminum plate. Each mirror was custom made using laser cut acrylic and mirror film. Each mirror’s position and angle can be adjusted delicately with screws and a nifty sprung setup, which is a whole lot simpler than the mechanism used on the real thing. The whole assembly is on a mount that allows it to track the movement of the sun to gain the most sunlight possible. There’s a giant laser-cut wooden gear on the bottom that allows rotation on a big Lazy Susan bearing, as well as a servo-driven tilting mechanism, with an Arduino using light dependent resistors to optimally aim the device.

It’s a cool-looking set up, but how does it compare with photovoltaics? Not so well. The mirror array was able to deliver around 1 kilowatt of heat into the water passing through the system, heating it to a temperature of approximately 44 C after half an hour. The water was warmed, but not to the point of boiling, and there’s no turbines or anything else hooked up to actually take that heat and turn it into electricity yet. Even if there were, it’s unlikely the system would reach the efficiency of a similarly-sized solar panel array. In any case, so far, the job is half done. As explained in the build video, it could benefit from some better mirrors and some structural improvements to help it survive the elements before it’s ready to make any real juice.

Ultimately, if you need solar power fast, your best bet is to buy a photovoltaic array. Still, solar thermal is a concept that has never quite died out.

Continue reading “DIY Solar Generator Inspired By James Webb Telescope”

Make Your Own Telescope, Right Down To The Glass

Telescopes are great tools for observing the heavens, or even surrounding landscapes if you have the right vantage point. You don’t have to be a professional to build one though; you can make all kinds of telescopes as an amateur, as this guide from the Springfield Telescope Makers demonstrates.

The guide is remarkably deep and rich; no surprise given that the Springfield Telescope Makers club dates back to the early 20th century. It starts out with the basics—how to select a telescope, and how to decide whether to make or buy your desired instrument. It also explains in good detail why you might want to start with a simple Newtonian reflector setup on Dobsonian mounts if you’re crafting your first telescope, in no small part because mirrors are so much easier to craft than lenses for the amateur. From there, the guide gets into the nitty gritty of mirror production, right down to grinding and polishing techniques, as well as how to test your optical components and assemble your final telescope.

It’s hard to imagine a better place to start than here as an amateur telescope builder. It’s a rich mine of experience and practical advice that should give you the best possible chance of success. You might also like to peruse some of the other telescope projects we’ve covered previously. And, if you succeed, you can always tell us of your tales on the tipsline!