Black And White TV Was Hiding A Special Input Board

[John Floren] found a nice old black & white TV in a thrift store, and as so many of us would, he decided to take it home. He was surprised upon getting it there that it had, in addition to the VHF and UHF antenna inputs, a mysterious extra connector on the back. Naturally, he set about investigating.

On the rear was an obviously hacked-in F-type connector, paired with a toggle switch, both unlabelled. Running the output of an RF modulator to the connector didn’t net an image on the screen, even though the same method worked when hooked up to the antenna inputs. Undeterred, [John] dug deeper.

Inside, a little PCB bearing the mark “TVM.04” was inside, bearing a handful of components. The device turned out to be a Pickes and Trout TVM-04 adapter, designed in the 1970s for hooking a computer up to a television for use as a monitor. The adapter board allows the Hitachi TV to accept a composite video input. [John] was able to test the TV with a NES clone outputting composite video and voila, it worked! [John] then went further, adding an audio input and installing standard RCA jacks to make it easier to use the input with more modern electronics.

It’s a great example of how simply opening up some electronics and poking around can teach you something. Hacking on old-school TVs is a popular pastime around these parts, it seems. If you’ve been working on your own retro display hack, be sure to let us know.

Formula 1 TV Broadcasting In 1:87 Scale

[Gerrit Braun], co-founder of the [Miniatur Wunderland] model railway and miniature airport attraction in Hamburg, takes his model building seriously. For more than five years, he and his team have been meticulously planning, testing, and building a 1:87 scale of Formula 1’s Monaco Grand Prix. Models at the Wunderland are crafted to the Nth detail and all reasonable efforts, and some unreasonable ones, are taken to achieve true-to-life results. In the video down below, part of Gerrit’s diary of the project, he discusses the issues and solutions to simulating realistic television broadcasts (the video is in German, but it has English language subtitles).

The goal is to model the large billboard-sized monitor screens set up at viewing stands. In real life, these displays are fed with images coming in from cameras located all over the circuit, the majority of which are operated by a cameraman. The miniaturization of cameras has come a long way in recent years — the ESP32-CAM module or the Raspberry Pi cameras, for example. But miniaturizing the pan-and-tilt actions of a cameraman, while perhaps possible, would not be reliable over the long time (these exhibits at Wunderland are permanent and operate almost daily). Instead, the team is able to use software to extract a cropped window from high-resolution video, and moving the position of this cropped window simulates the pointing of the camera. More details are in the video.

The skill and creativity of [Gerrit] and his team is incredible. Other videos on this project cover topics like the sound system, PCB techniques used for the roads, and the eye-popping use of an electric standing desk to lift an entire city block so workers can gain access to the area. Fair warning — these are addictive, and the video below is #76 of an unfinished series. We wrote about Wunderland back in 2016 when [Gerrit] and his twin brother [Frank] teamed with Google Maps to make a street view of their replica cities. Thanks to [Conductiveinsulation] who sent us the tip, saying that the discussion about interconnected triangular PCB tiles on this week’s Podcast #122 reminded him of this for some reason. Have any of our readers visited Miniatur Wunderland before? Let us know in the comments below.

Continue reading “Formula 1 TV Broadcasting In 1:87 Scale”

TV Ambient Lighting Built For Awesome Performance

[AndrewMohawk] had seen all kinds of ambient lighting systems for TVs come and go over the years, and the one thing they all had in common was that they didn’t live up to his high standards. Armed with the tools of the hacker trade, he set about building an Ambilight-type system of his own that truly delivered the goods.

The development process was one full of roadblocks and dead ends, but [Andrew] persevered. After solving annoying problems with HDCP and HDMI splitters, he was finally able to get a Raspberry Pi to capture video going to his TV and use OpenCV to determine the colors of segments around the screen. From there, it was simple enough to send out data to a string of addressable RGB LEDs behind the TV to create the desired effect.

For all the hard work, [Andrew] was rewarded with an ambient lighting system that runs at a healthy 20fps and works with any HDMI video feed plugged into the TV. It even autoscales to work with video content shot in different aspect ratios so the ambient display always picks up the edge of the video content.

With 270 LEDs fitted, the result is an incredibly smooth and fluid ambient display we’d love to have at home. You can build one too, since [Andrew] shared all the code on Github. As an added bonus, he also gave the system an audio visualiser, and tested it out with some Streetlight Manifesto, the greatest third-wave ska band ever to roam the Earth. The Fourth Wave still eludes us, but we hold out hope.

We’ve seen plenty of hacks in this vein before; one of the most impressive hacked a smart TV into doing the video processing itself. Video after the break.

Continue reading “TV Ambient Lighting Built For Awesome Performance”

Arduino Compatible IR Blaster Keeps TVs At Bay

The TV-B-Gone is a well known piece of kit in hacker circles: just point it at a noisy TV in a public space, hit the button, and one of the hundreds of IR remote codes for “Power Off” that it blinks out in rapid succession is more than likely to get the intended response. Unfortunately, while a neat conversation starter, its practical use is limited to a single function. But not so with this programmable IR development board that creator [Djordje Mandic] describes as a “TV-B-Gone on steroids”.

Sure you can point it at a random TV and turn it off with a single button press, but you can also plug the board into your computer and control it directly through the serial connection provided by its CP2104 chip. Using a simple plain-text control protocol, the user can modify the behavior of the device and monitor its status. [Djordje] imagines this feature being used in conjunction with a smartphone application for covert applications. To that end, the device’s support for an onboard battery should keep it from draining the phone during extended operations.

Of course you could do something else entirely with it simply by firing up the Arduino IDE and writing some new code for the device’s ATmega328P microcontroller. As with the IR-enabled ESP8266 development board we looked at a few months ago, there are plenty of applications for an all-in-one board that allows you to communicate with the wide world of IR devices.

Continue reading “Arduino Compatible IR Blaster Keeps TVs At Bay”

Roku TV Hacked To Run Philips Ambilight Setup

Roku TVs are interesting beasts, which use automatic content recognition on whatever you happen to be watching in order to market online streaming services direct to your loungeroom. [Ammar Askar] realised that this technology could instead be used to feed data to a computer to run a Philips Ambilight setup natively from whatever the TV displays. 

The core of the hack came about because [Ammar’s] TV doesn’t work natively with Philips Ambilight technology. Most off-the-shelf solutions involve feeding sources, like Chromecasts or game consoles, to a HDMI splitter and then to a PC running the Ambilight software, but it gets messy real quick. Instead, [Ammar] realised that the Roku-enabled TV should be more than capable of working with the Ambilight system, given the capability of its inbuilt hardware.

The hack consists of a custom app running on the Roku hardware, which uses the in-built Roku libraries to capture frames of whatever is being displayed on the TV. It then breaks up the screen into sections and averages the color in each area. This data is then passed to a laptop, which displays the relevant colors on its own screen, where the standard Philips Hue Sync app handles the Ambilight duties.

It’s a great hack and [Ammar] doesn’t skimp on the granular fine details of what it took to get this custom code running on the Roku TV. We’d love to see more hacks of this calibre done on smart TVs; after all, there’s plenty of horsepower under the hood in many cases. Alternatively, you could always follow the CIA’s example and turn your Samsung TV into a covert listening device. Video after the break.

Continue reading “Roku TV Hacked To Run Philips Ambilight Setup”

Time’s Almost Up For The FrankenFMs: The Impending Switchoff Of Analog TV

In a time when multi-channel digital TV is the norm it’s a surprise to find that a few low-power analog stations are still clinging on in some American cities. These are sometimes fill-in stations for weak signal areas, or more usually the so-called “FrankenFM” stations who transmit static images or digital patterns and derive income from their sound channel lying at the bottom end of the FM band to form unintended radio stations. Their days are numbered though, because the FCC is requiring that they be turned off by July 13th. There’s a way forward for the broadcasters to upgrade to low-power digital, but as you might expect they’re more interested in retaining the FrankenFM frequency from which they derive income.

The industry is represented by the LPTV coalition, who have requested permission to retain their FM frequency alongside their digital service. This has faced stiff opposition from other broadcasters, who see the very existence of the FrankenFM stations as a flagrant flouting of the rules that shouldn’t be rewarded. The FCC have yet to make a ruling, so there remains a slim chance that they may win a reprieve.

The sad tale of the few lingering analog TV stations in the USA is a last flickering ember of a once-huge industry that has been eclipsed without anyone but a few vintage technology geeks noticing, such has been the success of digital broadcasting. But analog TV is a fascinating and surprisingly intricate system whose passing however faint is worth marking.

Header: Tiia Monto, CC BY-SA 3.0.

Hidden TV-Out On The Nintendo DS Lite

The DS Lite was one of Nintendo’s most popular handheld gaming consoles, but unbeknownst to all, it has a hidden feature that could have made it even more popular. Digging through the hardware and firmware, the [Lost Nintendo History] team discovered the System-on-Chip (SoC) in the DS Lite can output a composite video signal.

The SoC can output a 10-bit digital output running at 16.7 MHz, but it is disabled by the stock firmware early in the boot process, so custom firmware was required. It still needs to be converted to an analog signal, so a small adaptor board with a DAC (digital-analog converter) and op-amp is attached to the flex cable of the upper screen. A set of buttons on the board allow you to select which screen is displayed on the TV. The adaptor board is open source, and the Gerbers and schematics are available on GitHub.

The current version of the adaptor board disables the upper screen, but the [Lost Nintendo History] team is considering designing a pass-through board to eliminate this disadvantage. The TV-out mod can also be combined with the popular Macro mod, in which the upper screen is removed to turn it into a Game Boy Advance. The Nintendo DS is a popular hacking subject, and we’ve been covering them for well over a decade.