Hackaday Podcast 081: Mask-apult, Beef Tallow, Grinding Melted Plastic, And Stretching Flowing Metal

Hackaday editors Mike Szczys and Tom Nardi chew the beef tallow as they take a tour through some of the best and most interesting articles from the past week, from kicking off another round of the popular Circuit Sculpture contest to building artisan coffee makers. We’ll look at the engineering behind the post-apocalyptic face mask launcher of our nightmares, and stand in awe at the intersection of orbiting spacecraft and lawn emojis. Several tiny remote controlled vehicles will be discussed, and we’ll take an unexpected look at how extruding plastic and aluminum might not be so different after all. Make sure to stick around until the end to learn why a little-known locomotive technology of the 1840s really sucked.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 081: Mask-apult, Beef Tallow, Grinding Melted Plastic, And Stretching Flowing Metal”

Mercurial Light Box Has A Secret Switch

Hit up the lighting aisle of any big box hardware store these days and you’ll probably find a variety of Edison bulbs — modern bulbs meant to evoke the bare, complicated tungsten filament bulbs from the early days of electric candlelight. Edison bulbs use filament LEDs, which resemble skinny candles with wicks at both ends and give off a nice light, especially when diffused by acrylic.

This simple light box uses two filament LEDs that float inside on an internal circuit sculpture. [lonesoulsurfer] likes to use old cell phone batteries and USB charging boards in his builds, and that’s exactly what’s inside this box.

Our favorite part of the build elevates this simple light box into a curiosity for those not in the know. It’s controlled with a mercury tilt switch, so all you’d have to do in a power outage is locate the box and turn it upside down, provided it has a charge.

We love elemental switch design around here, like this light box that switches on with salt water.

Hackaday Remoticon: Our 2020 Conference Is Packed With Workshops And We’re Calling For Proposals

We’re proud to announce the Hackaday Remoticon, taking place everywhere November 6th – 8th, 2020. It’s a weekend packed with workshops about hardware creation, held virtually for all to enjoy.

Update: Tickets are now available for 2020 Remoticon!

But we can’t do it without you. We need you to host a workshop on that skill, technique, or special know-how that you acquired through hard work over too many hours to count. Send in your workshop proposal now!

What is a Remoticon?

The Hackaday Remoticon achieves something that we just couldn’t do at the Hackaday Superconference: host more workshops that involve more people. Anyone who’s been to Supercon over the past six years can tell you it’s space-limited and, although we do our best to host a handful of workshops each day, those available seats are always in high demand.

We’re sad that we can’t get together in person for Supercon this year, but now we have an opportunity to host more workshops, engaging more live instructors and participants because they will be held virtually. This also means that we can make recordings of them available so that more people can learn from the experience. This is something that we tried way back during the first Supercon with Mike Ossmann’s RF Circuit Design workshop and 140,000 people have watched that video. (By the way, that link is worth clicking just to see Joe Kim’s excellent art.) Continue reading “Hackaday Remoticon: Our 2020 Conference Is Packed With Workshops And We’re Calling For Proposals”

An Easier Way To Roll Your Own LED Ball

Yes, circuit sculptures are amazing. But the patience and skill required puts most of the designs we’ve seen fairly far out of reach of the average beginner. We totally understand — not everyone finds fun in fiddly, structural soldering.

[Hari Wiguna] was captivated by the LED ball that [Jiří Praus] made last Christmas and figured there had to be less painful ways to cover a sphere in blinkenlights than printing a negative to use as a soldering jig. Turns out there is at least one way — just design the structure to use PCBs in place of brass rod, and fit everything together like a 3D puzzle made of FR4.

This SMD LED ball is almost ready for prime time. [Hari] wants this to be accessible for everyone and completely parametric, so he’s still working out the kinks. Check out the current form after the break as [Hari] rolls the ball through the various display modes using an Arduino and talks about the failures along the way, like having to file out the LED slots because they were designed too tightly the first time. [Hari] is also working on the friction fit of the pieces so the ball is easier to assemble, especially at the beginning.

3D prints as circuit sculpture soldering jigs are great tools, don’t get us wrong. How else are you gonna solder brass rod together on a curve?

Continue reading “An Easier Way To Roll Your Own LED Ball”

Time Bandit Clock Hits The Aesthetic Jackpot

When was the last time you looked forward to looking at a clock? Not to find out the time per se — like gee, maybe it’s beer o’ clock already — but waited with bated breath to gaze upon a particular clock? Never? We don’t blame you, but only because you haven’t seen this fruit machine clock in action yet.

Every 60 seconds, the reels start spinning like some little man inside pulled the lever on a slot machine (or fruit machine, as they’re called across the pond). The reels slow down and stop one by one, left to right, settling on the four digits of time in 24-hour mode. Imagine the suspense of coming to see what time it is just as the reels start spinning!

[timebanditclock] grew this fruit machine out of old-school discrete logic beautifully applied to stripboard. Each of the reels has a DIY binary encoder that uses IR transmit/receive pairs to generate a binary word. These four binary words are compared to a binary clock module using comparators.

We think this is an amazing concept already, but then [timebanditclock] worked overtime by doing it all in discrete logic. Spin past the break to see a demo and stick around for the build video.

Want a challenging clock build that’s a little less challenging? Maybe it’s time to try circuit sculpture.

Continue reading “Time Bandit Clock Hits The Aesthetic Jackpot”

Hackaday Links Column Banner

Hackaday Links: June 21, 2020

When Lego introduced its Mindstorms line in 1998, in a lot of ways it was like a gateway drug into the world of STEM, even though that term wouldn’t be invented for another couple of years. Children and the obsolete children who begat them drooled over the possibility of combining the Lego building system with motors, sensors, and a real computer that was far and away beyond anything that was available at the time. Mindstorms became hugely influential in the early maker scene and was slowly but steadily updated over the decades, culminating with the recently released Mindstorms Robot Inventor kit. In the thirteen years since the last release, a lot has changed in the market, and we Hackaday scribes had a discussion this week about the continued relevancy of Mindstorms in a time when cheap servos, microcontrollers, and a bewildering array of sensors can be had for pennies. We wonder what the readers think: is a kit that burns a $360 hole in your pocket still worth it? Sound off below.

Are you looking for a way to productively fill some spare time? Plenty of people are these days, and Hackaday has quite a deal for them: Hackaday U! This series of online courses will get you up to speed on a wide range of topics, starting tomorrow with Matthew Alt’s course on reverse engineering with Ghidra. Classes meet online once a week for four weeks, with virtual office hours to help you master the topic. Beside reverse engineering, you can learn about KiCad and FreeCad, quantum computing, real-time processing of audio and sensor data, and later in the year, basic circuit theory. We’ve got other courses lined up to fill out the year, but don’t wait — sign up now! Oh, and the best part? It’s on a pay-as-you-wish basis, with all proceeds going to charity. Get smarter, help others while doing it — what’s not to love about that?

Speaking of virtual learning, the GNU Radio Conference will be moving online for its 10th anniversary year. And while it’s good news that this and other cons have been able to retool and continue their mission of educating and growing this community, it’s still a bummer that there won’t be a chance to network and participate in all the fun events such cons offer. Or perhaps there will — it seems like the Wireless Capture the Flag (CTF) event is still going to happen. Billed as “an immersive plot-driven … competition featuring the GNU Radio framework and many other open-source tools, satellite communications, cryptography, and surreal global landscapes,” it certainly sounds like fun. We’d love to find out exactly how this CTF competition will work.

Everyone needs a way to unwind, and sometimes the best way to do that is to throw yourself into a project of such intricacy and delicate work that you’re forced into an almost meditative state by it. We’ve seen beautiful examples of that with the wonderful circuit sculptures of Mohit Bhoite and Jiří Praus, but here’s something that almost defies belief: a painstakingly detailed diorama of a vintage IBM data center. Created by the aptly named [minatua], each piece of this sculpture is a work of art in its own right and represents the “big iron” of the 1400 series of computers from the early 1960s. The level of detail is phenomenal — the green and white striped fanfold paper coming out of the 1403 line printer has tiny characters printed on it, and on the 729 tape drives, the reels spin and the lights flash. It’s incredible, all the more so because there don’t appear to be any 3D-printed parts — everything is scratch built from raw materials. Check it out.

As you can imagine, the Hackaday tip line attracts a fair number of ideas of the scientifically marginal variety. Although we’re not too fond of spammers, we try to be kind to everyone who bothers to send us a tip, but with a skeptical eye when terms like “free energy” come across. Still, we found this video touting to Nikola Tesla’s free energy secrets worth passing on. It’s just how we roll.

And finally, aside from being the first full day of summer, today is Father’s Day. We just want to say Happy Father’s Day to all the dads out there, both those that inspired and guided us as we were growing up, and those who are currently passing the torch to the next generation. It’s not easy to do sometimes, but tackling a project with a kid is immensely important work, and hats off to all the dads who make the time for it.

 

Hackaday Podcast 071: Measuring Micrometers, The Goldilocks Fit, Little Linear Motors, And 8-bit Games On ESP32

Hackaday editors Mike Szczys and Elliot Williams fan through a fantastic week of hacking. Most laser cutters try to go bigger, but there’s a minuscule one that shows off a raft of exotic components you’ll want in your bag of tricks. Speaking of tricks, this CNC scroll saw has kinematics the likes of which we’ve never seen before — worth a look just for the dance of polar v. Cartesian elements. We’ve been abusing printf() for decades, but it’s possible to run arbitrary operations just by calling this Turing-complete function. We wrap the week up with odes to low-cost laptops and precision measuring.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 071: Measuring Micrometers, The Goldilocks Fit, Little Linear Motors, And 8-bit Games On ESP32”