Building Circuits Flexibly

You think of breadboards as being a flexible way to build things — one can easily add components and wires and also rip them up. But MIT researchers want to introduce an actual flexible breadboard called FlexBoard. The system is like a traditional breadboard, but it is literally flexible. If you want to affix your prototype to a glove or a ball, good luck with a traditional breadboard. FlexBoard makes it easy. You can see a short video below and a second video presentation about the system, also.

The breadboard uses a plastic living hinge arrangement and otherwise looks more or less like a conventional breadboard. We can think of about a dozen projects this would make easier.

What’s more, it doesn’t seem like it would be that hard to fabricate using a 3D printer and some sacrificial breadboards. The paper reveals that the structures were printed on an Ender 3 using ePLA and a flexible vinyl or nylon filament. Want to try it yourself? You can!

We know what we will be printing this weekend. If you make any cool prototypes with this, be sure to let us know. Sometimes we breadboard virtually. Our favorite breadboards, though, have more than just the breadboard on them.

Continue reading “Building Circuits Flexibly”

Analog Anoraks: The Op Amp Contest Starts Now!

We thought it was time to give the analog side of Hackaday their chance to shine, and what’s the quintessential analog IC? The op amp! Whether you’re doing tricky signal conditioning, analog computations like it’s 1960, or just making music sound good, op amps are at the heart of many designs. This contest, starting right now, is your chance to show off what you can do with a good op amp, or a few.

And for everyone else, here’s your chance to dip your toes into the warm analog waters. Whether you’ve always wanted to build a Chua’s chaos circuit or just to listen to music, there’s probably an op-amp project that will fit your personal bill. All you have to do to enter is set up a project on Hackaday.io, and use the pull-down menu to enter. We welcome shows of op-amp bravado, naturally, but we’re also stoked to see your simple projects that might help our digital friends leave their world of black and white, and enter into the shades of grey.

Thanks to Digi-Key, our sponsor for the challenge, there are three $150 shopping sprees on the line for the winners. And as always, there are some honorable mention categories to help whet your analog whistle, and to give us an excuse to feature a lot of great projects. You’ve got until June 6, to get your entry in, but these aren’t necessarily simple builds, so get going now.

Continue reading “Analog Anoraks: The Op Amp Contest Starts Now!”

Tree Supports Are Pretty, So Why Not Make Them Part Of The Print?

Here’s an idea that [Nephlonor] shared a couple years ago, but is worth keeping in mind because one never knows when it might come in handy. He 3D printed a marble run track and kept the generated tree supports. As you can see in the image above, the track resembles a roller-coaster and the tree supports function as an automatically-generated scaffolding for the whole thing. Clever!

As mentioned, these results are from a couple of years ago; so this idea should work even better nowadays. Tree supports have come a long way since then, and are available in more slicers than just Cura.

Tree supports without an interface layer is easy mode for “generate me some weird-looking scaffolding”

If you’re going to do this, we suggest reducing or eliminating the support interface and distance, which is the spacing between the supports and the rest of the model. The interface makes supports easier to remove, but if one is intending to leave it attached, it makes more sense to have a solid connection.

And while we’re on the topic of misusing supports, we’d like to leave you with one more trick to keep in mind. [Angus] of Maker’s Muse tucked a great idea into one of his videos: print just the support structure, and use it as a stand for oddly-shaped objects. Just set the object itself to zero walls and zero infill, and the printer will generate (and print) only the support structure. Choose an attractive angle, and presto! A display stand that fits the object like a glove.

You can watch a brief video of the marble run embedded below. Again, tree supports both look better and are available in more slicers nowadays. Have you tried this? If so we’d love to hear about it, so let us know in the comments!

Continue reading “Tree Supports Are Pretty, So Why Not Make Them Part Of The Print?”

A cinematic shot of the resulting prosthetic finger attached to the glove

Missing Finger Gets A Simple Yet Fancy Replacement

The possibility of a table saw accident is low, but never zero — and [Nerdforge] has lost a finger to this ever-useful but dangerous contraption. For a right-handed person, losing the left hand pinky might not sound like much, but the incident involved some nerve damage as well, making inaccessible a range of everyday motions we take for granted. For instance, holding a smartphone or a pile of small objects without dropping them. As a hacker, [Nerdforge] decided to investigate just how much she could do about it.

On Thingiverse, she’s hit a jackpot: a parametric prosthetic finger project by [Nicholas Brookins], and in no time, printed the first version in resin. The mechanics of the project are impressive in their simplicity — when you close your hand, the finger closes too. Meant to be as simple as possible, this project only requires a wrist mount and some fishing line. From there, what could she improve upon? Aside from some test fits, the new finger could use a better mounting system, it could stand looking better, and of course, it could use some lights.

For a start, [Nerdforge] redesigned the mount so that the finger would instead fasten onto a newly-fingerless glove, with a few plastic parts attached into that. Those plastic parts turned out to be a perfect spot for a CR2032 battery holder and a microswitch, wired up to a piece of LED filament inserted into the tip of the finger. As for the looks, some metal-finish paint was found to work wonders – moving the glove’s exterior from the “printed project” territory into the “futuristic movie prop” area.

The finger turned out to be a resounding success, restoring the ability to hold small objects in ways that the accident made cumbersome. It doesn’t provide much in terms of mechanical strength, but it wasn’t meant to do that. Now, [Nerdforge] has hacked back some of her hand’s features, and we have yet another success story for all the finger-deficient hackers among us. Hacker-built prosthetics have been a staple of Hackaday, with the OpenBionics project in particular being a highlight of 2015 Hackaday Prize — an endearing demonstration of hackers’ resilience.

Continue reading “Missing Finger Gets A Simple Yet Fancy Replacement”

A Low Budget DIY Vibrotactile Stimulator For Experimental CRS

Modern techniques of Coordinated Reset Stimulation (CRS), which is usually administered with invasive deep brain stimulation, can have a miraculous effect on those suffering from Parkinson’s disease. However, the CRS technique can also apparently be administered via so-called vibrotactile CRS (vCRS) which essentially means vibrating certain nerve endings corresponding to brain regions that have a large cortical representation.

An example is vibrating the tips of the fingers using special gloves. This is a medical technique and as such is governed by the FDA. With ongoing trials, patients all around the world will simply have to wait. [HackyDev] has been working with a group of people on developing an open source vCRS glove.

This neuromodulation technique seems so promising, that this upfront effort by hackers around the world is simply a joy to see. Patents be dammed; we can work around them. Interested parties can follow the (very long, tricky-to-follow) thread here.

The hardware [HackyDev] put together uses a nodeMCU as the controller, driving eight motor coils via MOSFETS. The finger-mounted actuators are constructed by ripping the electromagnet out of a relay and mounting it in a 3D printed frame, with a magnet suspended on a spring. This part is mounted on each finger. The nodeMCU presents a simple web form that enables the configuration of the pulse parameters.

A permanent magnet is housed in the spring’s top section

The way the gloves appear to work is due to the way the body perceives sensory input, with a massive bias towards the hands and mouth region, referred to as the cortical homunculus. Each finger has an individual haptic element, which is actuated in a specific sequence with a carefully formed pulse at approx. 250 Hz.

This appears to activate similar in-brain effects as traditional (and invasive) DBS therapy by effectively de-synchronizing certain over-synchronized brain pathways and alleviating the overactive ß-wave activity in the brain. And this calms the tremors as well as many other PD symptoms. It’s all very exciting stuff, and we’ll be following this story closely.

For more on the backstory check out the 2017 paper by Peter A. Tass, as well as this later one, and this one. We’ve seen some recent success with diagnosing or at least detecting PD, by smell as well as via audio, so the future might look a little brighter for quite a number of people.

Supercon 2022: Sophy Wong Is Making An Impact With Artistic Wearables

Prolific designer and maker Sophy Wong is always looking toward the future, and that goes for everything from the costume pieces she makes to the idea of making itself. In her excellent and highly-visual Supercon talk, Sophy explores both, and gives the viewer a window on her evolved-and-evolving design philosophy.

You likely know Sophy as That Maker Who 3D Prints On Fabric, a label she is quick to dismiss, pointing animatedly toward the seminal work of one David Shorey, who also happened to be at Supercon 2022. As Sophy explains, the process begins by modeling disconnected bodies to be printed, then printing the first layer and pausing the print. At this point, a piece of nylon mesh is inserted, and the print is resumed. The result is that the mesh is trapped between the first and second layers, and the bodies are now connected by a common thread. Carefully remove the sandwich from the print bed and you have a highly-flexible, mesmerizing piece of material that almost acts like chain maille.

Continue reading “Supercon 2022: Sophy Wong Is Making An Impact With Artistic Wearables”

Hackaday Podcast 202: CNC Monks, Acrobot, Bootleg Merch, And The Rise And Fall Of Megahex

This week, Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos stood around and marveled at machinery in its many forms, from a stone-cutting CNC to an acrobatic robot to an AI-controlled Twitch v-tuber. But before all of that, we took a look at the winners of our FPV Vehicle Contest, poured one out for Google Stadia, and Elliot managed to stump Kristina once again with this week’s What’s That Sound. Will you fare better?

Later, we drooled over an open-source smart watch, argued screen printing versus stenciling when it comes to bootleg Hackaday merch, and got into the finer points of punycodes.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

And/or download it and listen offline.

Continue reading “Hackaday Podcast 202: CNC Monks, Acrobot, Bootleg Merch, And The Rise And Fall Of Megahex”