Globe-Shaped World Clock Is A 3D-Printed Mechanical Marvel

Time zones are a complicated but necessary evil. Humans like the numbers on the clock to vaguely match up with what the sun is doing in the sky outside. To that end, different places in the world keep different time. If you want to keep track of them in a very pretty fashion, you might consider building a fancy and beautiful World Clock like [Karikuri] did. 

The design is based around a globe motif, mimicking the world itself. Only, on the surface of the globe, there are clock faces instead of individual countries. Each clock runs to its own time, directed by a complicated assemblage of 3D-printed gears. Mechanical drive is sent to the globe from a power base, which itself carries a mechanical seven-segment display. This too can display the time for different regions by using the controls below. It’s also useful for setting the clock to the correct time.

It’s a little difficult to follow the build if you don’t speak Japanese. However, quality subtitles are available in English if you choose to enable them.

We’ve seen [Karikuri’s] work before. We’ve also featured a great many world clocks over the years, including this particularly beautiful example that tracks night and day. Just don’t expect it to keep track of moon time. Video after the break.

Continue reading “Globe-Shaped World Clock Is A 3D-Printed Mechanical Marvel”

A Clock Made Out Of Electromechanical Relays

Electromechanical circuits using relays are mostly a lost art these days, but sometimes you get people like [Aart] who can’t resist to turn a stack of clackity-clack relays into a functional design, like in this case a clock (article in Dutch, Google Translate).

It was made using components that [Aart] had come in possession of over the years, with each salvaged part requiring the usual removal of old solder, before being mounted on prototype boards. The resulting design uses the 1 Hz time signal from a Hörz DCF77 master clock which he set up to drive a clock network in his house, as he describes in a forum post at Circuits Online (also in Dutch).

The digital pulses from this time signal are used by the relay network to create the minutes and hours count, which are read out via a resistor ladder made using 0.1% resistors that drive two analog meters, one for the minutes and the other for the hours.

Sadly, [Aart] did not draw up a schematic yet, and there are a few issues he would like to resolve regarding the meter indicators that will be put in front of the analog dials. These currently have weird transitions between sections on the hour side, and the 59 – 00 transition on the minute dial happens in the middle of the scale. But as [Aart] says, this gives the meter its own character, which is an assessment that is hard to argue with.

Thanks to [Lucas] for the tip.

Flip-Segment Digital Clock Is A Miniature Mechanical Marvel

Clocks are such mundane objects that it’s sometimes hard for them to grab your attention. They’re there when you need them, but they don’t exactly invite you to watch them work. Unless, of course, you build something like this mechanical flip-segment clock with a captivating exposed mechanism

“Eptaora” is the name of this clock, according to its inventor [ekaggrat singh kalsi]. The goal here was to make a mechanical flip-segment display as small as possible, which meant starting with the smallest possible printable screw hole and scaling the design up from there. Each segment is controlled by a multi-lobed cam which bears on a spring-loaded cam follower. When the cam rotates against the follower, a segment is flipped up from the horizontal rest position to the vertical display position. A carryover mechanism connects two adjacent displays so that each pair of digits can be powered by a single stepper, and the finished clock is quite small — a little bit larger than the palm of a hand. The operation seems quite smooth, too, which is always a bonus with clocks such as these. Check out the mesmerizing mechanism in the video below.

We’d have sworn we covered a similar clock before — indeed [ekaggrat] says the inspiration for this clock came from one with a similar mechanism — but we couldn’t find it in the back catalog. Oh sure, there are flip-up digital clocks and all manner of mechanical seven-segment displays, but this one seems to be quite unique, and very pleasing.

Continue reading “Flip-Segment Digital Clock Is A Miniature Mechanical Marvel”

chain and sprocket clock

Sprockets And Chains Drive This Unique Mechanical Digital Clock

When it comes to mechanical timepieces, we’re used to seeing mechanisms stuffed with tiny gears and wheel, often of marvelous complexity and precision. What we’re perhaps less used to seeing is a clock that uses chains and sprockets, and that looks more like what you’d find on a bicycle on your typical bicycle.

We can’t recall seeing anything quite like [SPE]’s “Time Machine” before. It’s one of those builds that explains itself by watching it work, so check out the video below and you’ll see where this one is going. The clock has three loops of roller link chain, each of which has a series of numbers welded to the links. The loops of chain are advanced around sprockets by a trio of geared-down motors, with the numbers standing up straight at the top of each loop. A microcontroller keeps track of the time and starts the clock advancing every minute, but a series of microswitches that are activated by the passing chain do all the rest of the control — sounds like a perfect time to say, “Could have used a 555,” but we still think it’s great the way it is.

Surprisingly, [SPE]’s clock seems like it wouldn’t be that hard to live with. Many unique electromechanical clocks that we feature, like a clock that’s nothing but hands or The Time Twister, are a little on the noisy side. While “Time Machine” isn’t exactly silent, its whirring isn’t terrible, and even though its clicks are a little loud, they’ve got a satisfying mechanical sound to them.

Continue reading “Sprockets And Chains Drive This Unique Mechanical Digital Clock”

A Solari Mechanical Digital Clock Hack With A Little Extra

[Alfredo Cortellini] was perusing an antique shop in Bologna, and came across a nice example of a late 1950s timepiece, in the shape of a Solari Cifra 5 slave clock, but as the shop owner warned, it could never tell the time by itself. That sounded like a challenge, and the resulting hack is a nice, respectful tweak of the internals to bring it into the modern era. Since the clock requires a single pulse-per-minute in order to track time, the simplest track often followed is to open the back, set the correct time manually by poking the appropriate levers, and then let an external circuit take over clocking it. [Alfredo] wanted autonomy, and came up with a solution to make the thing fully adjust itself automatically.

Electronics-wise, initial prototyping was performed with a Nucleo 32 dev board and a pile of modules, before moving to a custom PCB designed in Altium Designer. An STM32G031 runs the show, with a few push buttons and a SSD1306 OLED display forming the UI.

Using some strategically-placed magnets and hall effect sensors, the status of the internal mechanism could be determined. Minute advancements were effected by driving the clock’s 24V electromagnet with a DRV8871 motor driver IC, the power supply for which was generated from the USB supply via a TPS61041 boost converter. In order to synchronise the mechanism with the electronics, the unit could have been driven to advance a minute at a time, but since every hour would need sixty pulses, this could take a while given the limited speed at which that could be done reliably. The solution was to sneak in a crafty MG996R high-torque servo motor, which pushes on the hour-advancement lever, allowing the unit to be zeroed much faster. Sensing of the zero-hour position was done by monitoring the date-advance mechanism, that is not used in this model of clock. Once zeroed, the clock could then be advanced to the correct time and kept current. Firmware source, utililising FreeRTOS can be found on the project GItHub, with schematics and Fusion360 files on the Hackaday.IO project linked above.

If you were thinking you’ve seen these Solari soft-flap displays here before, you’d be quite correct, but if you’re not so much interested in marking the passage of time, but bending such devices to your other indication whims, we’ve got you covered also.

Continue reading “A Solari Mechanical Digital Clock Hack With A Little Extra”

Building This Mechanical Digital Clock Took Balls

In the neverending quest for unique ways to display the time, hackers will try just about anything. We’ve seen it all, or at least we thought we had, and then up popped this purely mechanical digital clock that uses nothing but steel balls to display the time. And we absolutely love it!

Click to embiggen (you’ll be glad you did)

One glimpse at the still images or the brief video below shows you exactly how [Eric Nguyen] managed to pull this off. Each segment of the display is made up of four 0.25″ (6.35 mm) steel balls, picked up and held in place by magnets behind the plain wood face of the clock. But the electromechanical complexity needed to accomplish that is the impressive part of the build. Each segment requires two servos, for a whopping 28 units plus one for the colon. Add to that the two heavy-duty servos needed to tilt the head and the four needed to lift the tray holding the steel balls, and the level of complexity is way up there. And yet, [Eric] still managed to make the interior, which is packed with a laser-cut acrylic skeleton, neat and presentable, as well he might since watching the insides work is pretty satisfying.

We love the level of craftsmanship and creativity on this build, congratulations to [Eric] on making his first Arduino build so hard to top. We’ve seen other mechanical digital displays before, but this one is really a work of art.

Continue reading “Building This Mechanical Digital Clock Took Balls”

Mechanical CPU Clock Is Just As Confusing As Its Namesake

[Lior Elazary] designed and built this clock to simulate the function of a CPU. The problem is that if you don’t already have a good grasp of how a CPU works we think this clock will be hopelessly confusing. But lucky for us, we get it, and we love it!

Hour data is shown as a binary number on Register A. This is the center column of red parts and is organized with the MSB on the bottom, the LSB on the top, and left-pointing bits function as digital 1. The clock lacks the complexity necessary for displaying any other time data. But that’s okay, because the sound made by the ball-bearing dropping every minute might drive you a bit loony anyway. [Lior] doesn’t talk about the mechanism that transports that ball bearing, but you can see from the video after the break that a magnet on a circular path picks it up and transports it to the top of the clock where gravity is used to feed the registers. There are two tracks which allow the ball to bypass the A register and enter the B register to the right. This works in conjunction with register C (on the left) to reset the hours when the count is greater than 11.

If you need a kickstart on how these mechanical adders are put together, check out this wooden adder project.

Continue reading “Mechanical CPU Clock Is Just As Confusing As Its Namesake”