Final Weekend Of Robots In The Hackaday Prize

This is the final weekend to enter your robot project in the 2021 Hackaday Prize.

The Redefine Robots challenge is looking to you for great ideas in making robots part of modern life. For too long, it’s been the vision of what these machines will look like in the future. But what should they look like right now? Sure, that might be C-3PO, but isn’t it more likely that your robot assistant lives on a smart watch, or that labor saving droid helps by passing the butter when limited mobility makes that a challenge for someone. Where are the everyday things that would be better with just a bit of clever technology?

This robot holds the flashlight , following your hands as you work.

Part of the challenge here is breaking out of that mold developed from decades of seeing robots that tend to take just a few forms; something with four wheels and a camera or bots designed to mimic the human body. One great example of rethinking these stereotypes is [Harry Gao’s] task lighting robot. It uses machine learning to look for your hands on a work surface and move a bright light to make sure you can always see what you’re doing.

Of course movement isn’t a prerequisite, if you want to think of this as a smart automation challenge. The best robots from science fiction are remembered because of their interaction with people — machines with personality. There’s certainly a place in our world for companion robots that keep you company like this entry called Stack-chan. It’s not a replacement for human interaction, but a complement to the way we communicate with each other and the world around us.

You still have time to get in on this round if you make this weekend your own personal hackathon. Ten entries will be selected to receive a $500 prize and move on to the final round at the end of October. Next week we’ll begin the final, wildcard round as we head into the fall and eventually award $25,000 for the top prize!

A wall clock with exposed circuit boards

Drunk Wall Clock Uses Convoluted Circuits To Display Time

Here at Hackaday we can never get enough of odd clocks, and we’re delighted to see [Dan O’Shea]’s creation called the Wifi-Telnet-FPGA-NTSC Drunk Wall Clock. That mouthful is an accurate description of what it does: at the heart of the device is an ESP32 that uses WiFi to connect to a Raspberry Pi. It then telnets into the system, logs in, and requests the current time using the Linux date command. So far, so ordinary.

The “FPGA” part is where it gets weirder: the ESP32 is hooked up to a VGA1306 board. This is a little PCB with an FPGA that emulates an OLED display and outputs the image to a VGA connector. [Dan] could have simply hooked up a VGA display to this, but instead went for another layer of complexity by converting the VGA signal to something resembling composite video, using nothing more than three resistors. The resulting “NTSC” signal is then fed into a small TFT display that shows the time.

The clock got its “drunk” label because the process of repeatedly running the date command and parsing its output is slow and prone to hiccups, resulting in a display where the seconds advance in a somewhat unsteady manner. This fits well with the overall aesthetic of the clock, which consists of a heap of PCBs held together with cable ties and electrical tape. Mounted on a round panel of recycled wood, it makes a beautiful wall ornament for any hacker lab.

We love projects like this that accomplish a simple task in a convoluted way, and there’s no shortage of needlessly complicated clocks, whether physically drawing the time or using machine-learning data. But if you simply like your clocks with their electronics exposed, check out this free-form LED clock or this neat circuit sculpture clock.

Continue reading “Drunk Wall Clock Uses Convoluted Circuits To Display Time”

Flamethrower weedkiller mounted on a robot arm riding a tank tracked base

Don’t Sleep On The Lawn, There’s An AI-Powered, Flamethrower-Wielding Robot About

You know how it goes, you’re just hanging out in the yard, there aren’t enough hours in the day, and weeding the lawn is just such a drag. Then an idea just pops into your head. How about we attach a gas powered flamethrower to a robot arm, drive it around on a tank-tracked robotic base, and have it operate autonomously with an AI brain? Yes, that sounds like a good idea. Let’s do that. And so, [Dave Niewinski] did exactly that with his Ultimate Weed Killing Robot.

And you thought the robot overlords might take a more subtle approach and take over the world one coffee machine at a time? No, straight for the fully-autonomous flamethrower it is then.

This build uses a Kinova Robots Gen 3 six-axis arm, mounted to an Agile-X Robotics Bunker base. Control is via a Connect Tech Rudi-NX box which contains an Nvidia Jetson Xavier NX Edge AI computing engine. Wow that was a mouthful!

Connectivity from the controller to the base is via CAN bus, but, sadly no mention of how the robot arm controller is hooked up. At least this particular model sports an effector mount camera system, which can feed straight into the Jetson, simplifying the build somewhat.

To start the software side of things, [Dave] took a video using his mobile phone while walking his lawn. Next he used RoboFlow to highlight image stills containing weeds, which were in turn used to help train a vision AI system. The actual AI training was written in Python using Google Collaboratory, which is itself based on the awesome Jupyter Notebook (see also Jupyter Lab on the main site. If you haven’t tried that yet, and if you do any data science at all, you’ll kick yourself for not doing so!) Collaboratory would not be all that useful for this by itself, except that it gives you direct, free GPU access, via the cloud, so you can use it for AI workloads without needing fancy (and currently hard to get) GPU hardware on your desk.

Details of the hardware may be a little sparse, but at least the software required can be found on the WeedBot GitHub. It’s not like most of us will have this exact hardware lying around anyway. For a more complete description of this terrifying contraption, checkout the video after the break.

Continue reading “Don’t Sleep On The Lawn, There’s An AI-Powered, Flamethrower-Wielding Robot About”

Building An Aluminum RC Truck From Scratch

These days you can get just about any kind of radio controlled vehicle as a ready-to-run model. Cars, trucks, excavators, you name it. Open the box, charge the batteries, and you’re ready to roll. Even with all these modern conveniences, there is still a special breed of modelers who create their own models using only a few off-the-shelf parts.

[Rini Anita] is exactly that rare breed, creating this aluminum RC truck from scratch. The truck itself is a cab-over — short for Cab Over Engine (COE), a style seen making local deliveries worldwide. He starts with the ladder frame chassis, which is constructed using an extruded aluminum channel. This is the same material you’d normally use for the door tracks in retail store display cases. The electronics and standard RC fare: a receiver, electronic speed control, and a servo for steering. Batteries are recycled lithium cells. The main gearbox and drive axle look to be sourced from another RC vehicle, while leaf springs and suspension components are all custom built.

The truck’s body is a great example hand forming metal. First, a wooden form was created. Sections for the windows and door panels were carved out. Sheet aluminum was then bent over the wood form. Carefully placed hammer blows bend the metal into the carved sections – leaving the imprints of doors, windows, and other panel lines.

Throughout this build, we’re amazed by [Rini]’s skills, and the fact that the entire job was done with basic tools. A grinder, an old drill press, and a rivet gun are the go-to tools; no welder or 3D printer to be found. This puts a project like this well within the means of just about any hacker — though it may take some time to hone your skills! For his next truck, maybe [Rini] can add a self driving option!

Continue reading “Building An Aluminum RC Truck From Scratch”

Grappling Hook Robot Swings Like Spiderman

We’ll admit it is a bit of a gimmick, but [Adam Beedle’s] Spider-Bot did make us smile. The little robot can launch a “web” and use it to swing. It is hard to picture, but the video below will make it all clear. It can also use the cable to climb a wall, sort of.

The bot’s ability to fling a 3D printed hook on a tether is remarkable. Details are scarce, but it looks like the mechanism is spring-loaded with a servo motor to release it. Even trailing a bit of string behind it, the range of the hook is impressive and can support the weight of the robot when it winches itself up. There’s even a release mechanism that reminds us more of Batman than Spiderman.

If we were going full autonomous, we’d consider a vision system. On the other hand, you could probably tell a lot by the tension on the cable and some way to measure the angle of it coming out of the robot. If you come up with a practical use for any of this, we’d love to see it.

We’ve seen robots that fly, jump, and can climb walls before. We don’t remember one that swings like Tarzan.

Continue reading “Grappling Hook Robot Swings Like Spiderman”

Redefine Robots Is The Newest Hackaday Prize Challenge

Roboticists and automation enthusiasts, start your engines. This 2021 Hackaday Prize challenge is made just for you! It’s the Redefine Robots challenge and it calls for a softer, more utopian side of what tomorrow’s automated future can be.

The promise of robots has always been one of making our lives better. But so far we still don’t have a robot assistant sitting next to us ready to lend a hand. That’s where you come in! Whether it’s a physical, nuts-and-bots robot or a 1’s and 0’s software bot, create something that people can see and interact with in their day-to-day lives in ways that make sense and make us feel good about where technology is going.

We make fun of the robot that’s been brought into the world to pass the butter, but honestly if that’s something someone needs help with, isn’t a robot a pretty good solution? That’s what [Michael Roybal] thought way back during the 2016 Hackaday Prize when he designed Zizzy the robot to zip around a tabletop, assisting people with limited mobility.

In the same year, [Mike Rigsby] was working on a little bot whose purpose was to wander around interacting with people. A robot companion (dare we say pet?) is one way to keep up interactivity for people spending long periods of time alone. Along the same lines is the EMOJO chatbot already entered in this year’s contest that seeks to deliver a digital companion onscreen.

Assistive robots aren’t the only ones to shine here. Consider some labor savers, like pick-and-place robots that help you build electronics. Does that reinvent robots? Maybe, maybe not, but getting a 3D printer to do your solder for you sure does. Think of how revolutionary robot vacuums were for people who own both hardwood floors and cats. Those bots are around humans all the time and seem normal now. What’s next automation to get this introduction into everyday life?

Ten finalists from this round will win $500 and be shuttled onto the final round judging in October for a chance at the $25,000 Hackaday Prize and four other top prizes. Start your project page on Hackaday.io and use the drop-down in the left sidebar to enter it into the 2021 Hackaday Prize.

Minimalist Robot Arm Really Stacks Up

There’s nothing like a little weekend project, especially one that ends up better than you expected. And when you literally build a robotic arm out of workshop scraps, so much the better.

Longtime readers will no doubt recognize the build style used here as that of [Norbert Heinz], aka “Homofaciens” on YouTube. [Norbert] has a way of making trash do his bidding, and has shown us all kinds of seemingly impossible feats of mechatronics with just what’s lying around. In this case, his robot arm is made from scrap wooden roofing battens, or what we’d call furring strips here in the US. The softwood isn’t something you’d think would make a great material for building robots, but [Norbert] makes its characteristics work for him, like using wax-lubricated holes for hinge points. Steppers and lead screws cannibalized from an old CNC build, along with the drive electronics, provide the motion. It’s a bit — compliant — but precise enough to pick up nuts and stack them nicely. The video below gives an overview of the build, and detailed instructions are available too.

We always appreciated [Norbert]’s minimalist builds, and seeing what can be accomplished with almost nothing is always inspirational. If you’re not familiar with his work, check out his cardboard and paperclip CNC plotter, his tin can encoders, or his plasma-powered printer.

Continue reading “Minimalist Robot Arm Really Stacks Up”