Hackaday Podcast 007: Everything Microcontrollers, Deadly Clock Accuracy, CT X-Rays, Mountains Of E-Waste

Elliot Williams and Mike Szczys look at all that’s happening in hackerdom. This week we dive deep into super-accurate clock chips, SPI and microcontroller trickery, a new (and cheap) part on the microcontroller block, touch-sensitive cloth, and taking a home X-ray to the third dimension. We’re saying our goodbyes to the magnificent A380, looking with skepticism on the V2V tech known as DSRC, and also trying to predict weather with automotive data. And finally, what’s the deal with that growing problem of electronic waste?

Links for all discussed on the show are found below. As always, join in the comments below as we’ll be watching those as we work on next week’s episode!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 007: Everything Microcontrollers, Deadly Clock Accuracy, CT X-Rays, Mountains Of E-Waste”

Hackaday Links Column Banner

Hackaday Links: February 17, 2019

There is a population of retrocomputing enthusiasts out there, whose basements, garages, and attics have been taken over by machines of years past. Most of the time, these people concentrate on one make; you’re an Apple guy, or you’re a Commodore guy, or you’re a Ford guy, or you’re a Chevy guy. The weirdos drive around with an MSX in the trunk of an RX7. This is the auction for nobody. NASA’s JPL Lab is getting rid of several tons of computer equipment, all from various manufacturers, and not very ‘vintage’ at all. Check out the list. There are CRT monitors from 2003, which means they’re great monitors that weigh as much as a person. There’s a lot of Sun equipment. If you’ve ever felt like cleaning up a whole bunch of trash for JPL, this is your chance. Grab me one of those sweet CRTs, though.

Last week, we published something on the ‘impossible’ tech behind SpaceX’s new engine. It was reasonably popular — actually significantly popular — and got picked up on Hacker News and one of the Elon-worshiping subreddits. Open that link in one tab. Now, open this link in another. Read along as a computer voice reads Hackaday words, all while soaking up YouTube ad revenue. What is our recourse? Does this constitute copyright infringement? I dunno; we don’t monetize videos on YouTube. Thanks to [MSeifert] for finding this.

Wanna see something funny? Check out the people in the comments below who are angry at a random YouTuber stealing Hackaday content, while they have an ad blocker on.

Teenage Engineering’s OP-1 is back in production. What is it and why does it matter? The OP-1 is a new class of synthesizer and sampler that kinda, sorta looks like an 80s Casio keyboard, but packed to the gills with audio capability. At one point, you could pick one of these up for $800. Now, prices are at about $1300, simply because production stopped for a while (for retooling, we’re guessing) and the rumor mill started spinning. The OP-1 is now back in production with a price tag of $1300. Wait. What? Yes, it’s another case study in marketing: the best way to find where the supply and demand curves cross is to stop production for a while, wait for the used resellers to do their thing, and then start production again with a new price tag that people are willing to pay. This is Galaxy Brain-level business management, people.

What made nerds angry this week? Before we get to that, we’re gonna have to back track a bit. In 2016, Motherboard published a piece that said PC Gaming Is Still Way Too Hard, because you have to build a PC. Those of us in the know realize that building a PC is as simple as buying parts and snapping them together like an expensive Lego set. It’s no big deal. A tech blog, named Motherboard, said building a PC was too hard. It isn’t even a crack at the author of the piece at this point: this is editorial decay.

And here we are today. This week, the Internet reacted to a video from The Verge on how to build a PC. The original video has been taken down, but the reaction videos are still up: here’s a good one, and here’s another. Now, there’s a lot wrong with the Verge video. They suggest using a Swiss army knife for the assembly, hopefully one with a Philips head screwdriver. Philips head screwdrivers still exist, by the way. Dual channel RAM was completely ignored, and way too much thermal compound was applied to the CPU. The cable management was a complete joke. Basically, a dozen people at The Verge don’t know how to build a PC. Are the criticisms of incompetence fair? Is this like saying [Doug DeMuro]’s car reviews are invalid because he can’t build a transmission or engine, from scratch, starting from a block of steel? Ehhh… we’re pretty sure [Doug] can change his own oil, at least. And he knows to use a screwdriver, instead of a Swiss army knife with a Philips head. In any event, here’s how you build a PC.

Hackaday writers to be replaced with AI. Thank you [Tegwyn] for the headline. OpenAI, a Musk and Theil-backed startup, is pitching a machine learning application that is aimed at replacing journalists. There’s a lot to unpack here, but first off: this already exists. There are companies that sell articles to outlets, and these articles are produced by ‘AI’. These articles are mostly in the sports pages. Sports recaps are a great application for ML and natural language processing; the raw data (the sports scores) are already classified, and you’re not looking for Pulitzer material in the sports pages anyway. China has AI news anchors, but Japan has Miku and artificial pop stars. Is this the beginning of the end of journalism as a profession, with all the work being taken over by machine learning algorithms? By vocation, I’m obligated to say no, but I have a different take on it. Humans can write better than AI, and the good ones are nearly as fast. Whether or not the readers care if a story is accurate or well-written is another story entirely. It will be market forces that determine if AI journalists take over, and if you haven’t been paying attention, no one cares if a news story is accurate or well written, only if it caters to their preexisting biases and tickles their confirmation bias.

Of course, you, dear reader, are too smart to be duped by such a simplistic view of media engagement. You’re better than that. You’re better than most people, in fact. You’re smart enough to see that most media is just placating your own ego and capitalizing on confirmation bias. That’s why you, dear reader, are the best audience. Please like, share, and subscribe for more of the best journalism on the planet.

This Chromecast Volume Knob Has A Certain ’70s Chic

Chromecast devices have become popular in homes around the world in the last few years. They make it easy to cast audio or video from a smartphone or laptop, to a set of speakers or a display connected to the same network. [Akos] wanted to control the volume on these devices with a single, simple piece of equipment, rather than always reaching for a smartphone. Thus was built the CastVolumeKnob.

The project began by using Wireshark to capture data sent by the pychromecast library. Once [Akos] understood the messaging format, this was implemented in MicroPython on an ESP8266. A rotary encoder is used as a volume knob, and a Neopixel ring is used for visual feedback as to the device being controlled and the current volume level.

Further work was done to improve usability, with an ATtiny85 microcontroller being used to monitor the encoder for button presses before waking up the ESP8266, greatly reducing power consumption. The device is also rechargeable, thanks to an 18650 lithium polymer battery, and charger and boost converter boards. It’s all wrapped up in a sleek 3D printed case, with a translucent bezel for the LEDs and a swanky machined aluminium knob as the cherry on top.

It’s a homemade device that nonetheless would be stylish and unobtrusive in the living room environment. We imagine it proves very useful when important phone calls come in and it’s necessary to cut the stereo down to a more appropriate volume.

For another take, check out this USB volume knob with a nice weighty feel, courtesy of lead shot.

Hackaday Links Column Banner

Hackaday Links: January 27, 2019

Once again, Uber found a company to build their ‘air taxis’. This time it’s Boeing. While there are no details on the Boeing bird, I’m going to propose again that Uber buy the Santa Monica airport as a hub for their air taxi program; SMO is going to be shut down anyway, and this is the funniest reality that can come from the idea of an ‘air taxi’ program.

According to ancient astronaut theorists, one of the bigger problems with full-time tech YouTubers (think Dave and Fran here) is the insistence that YouTube suggests conspiracy theory videos as a related video. If you do a video teardown on Apollo flight hardware, you’re going to fall into the same category as people who believe the moon is hollow, people who believe the moon landing was faked, and recently, flat-earthers. This is a ‘bad move’ by YouTube because the Venn diagram of people who want to watch conspiracy videos and people who want to watch teardowns is two circles. It makes community engineering hard, and you get a lot of idiots on YouTube comments. YouTube is now changing the recommendation algorithm. There are other reasons YouTube is doing this, specifically relating to videos that aren’t about weird electronics, but we’re not going to talk about that here, thx.

This week was Winter NAMM, the National Association of… music, something something. That means you can go to Anaheim and check out all the musical instrument related stuff that will be released this year. Think of it as CES, only you don’t get the flu and want to murder everyone, and it’s about guitars and synths instead of Alexas duct taped to Roombas. Here’s what it was like last year, with the tl;dr being a wall of cabs, Euroracks everywhere, and the best way to get started in the industry is to buy some old trademarks, not by actually designing something new. Speaking of, here are some Kay reissues.

So, what’s cool at NAMM this year? Let’s do guitars first. Gibson’s 2019 lineup is not dumb, a reversal of the previous twenty years; There’s a Les Paul Standard with humbuckers or P90s, and there’s a TV Junior. Fender? There’s an acoustasonic Tele that was terrible the first time around, and it’s decidedly not terrible. The Electric XII is back, finally, and it’s even cooler than the Electric Six wait never mind it has a 1 11/16th nut. There is no Tele Plus with a Honda Goldwing emblem, but we make do with what we can. The pyramids are upside-downBuy a dookie pedal.

How about some synths?  Behringer is cranking out another clone, this time an Oberheim OB-Xa. Word on the street is that a 303 is on the horizon, but the vocoder is out now. The Odyssey exists, and the SH-101 clone comes with a handle so you can keytar it.  Guitars with Raspberry Pis? Could it be? Yes, Lucern Custom Instruments is collaborating with Tracktion to put a synth in a guitar. There’s a touchscreen BioTek 2 synth installed below the bridge. It’s like something [Matt Bellamy] would play, but it’s got a Raspberry Pi.

Elektron has a new samplerOh my god, the only way to make money in the instrument industry is to buy up trademarks. Well, trademarks and signature amps and guitars. Speaking of, where’s the signature Vangelis synths?

The news that will have the biggest impact a decade from now is the announcement that MIDI 2.0 is getting ready for release. New features include auto-config with DAWs, extended resolution, and expressiveness (to stop the Western hegemony on electronic music), and backward compatibility with MIDI 1.0.

This isn’t explicitly NAMM-related, but Eurorack is now a thing and [Jan] is always coming up with some interesting synths-on-a-chip. This time, it’s a drum machine in a Eurorack format. Is it based on anything? Not really, although it would go well in any Detroit acid track. Check out the video.

7-Segment Display Is 3D Printed And Hand Cranked

[Peter Lehnér] has designed a brilliant 7-segment flip-segment display that doesn’t really flip. In fact, it doesn’t use electromagnets at all. This one is 3D printed and hand cranked. It’s a clever use of a cam system to set the segments for each digit (0-9) makes it a perfect entry in the Hackaday 3D Printed Gears, Pulleys, and Cams contest.

We find the nomenclature of these displays to be a bit confusing so let’s do a quick rundown. You may be most familiar with flip-dot displays, basically a dot-matrix grid of physical pixels that are black on one side and brightly colored (usually chartreuse) on the other. We saw a giant flip-dot display at CES four years ago. Akin to flip-dots are flip-segment displays which do the same thing but with segments of a digit rather than dots. We featured a 3D printed version of these last week. The common aspect of most flip displays is an electromagnet used to change the state of the dot or segment.

The version [Peter] designed gets rid of the magnets and coils, replacing them with mechanical logic instead. Each segment sits in a track on the frame of the digit. When slid to one position it is hidden by the bezel, in the other position it slides into view. A cleverly designed set of cams move the segments at each of 10 positions. The animated graphic here shows three cams which are responsible for moving just two of the segments. More cams are added to complete assembly, a process shown in the second half of the demo video found below.

We’re delighted to see this as an entry in the contest and can’t wait to see what kind of gear, cam, or pully scheme is built into your projects!

Continue reading “7-Segment Display Is 3D Printed And Hand Cranked”

CNC Mill Repairs IPhone 7

Modern smartphones are highly integrated devices, bringing immense computing power into the palm of one’s hand. This portable computing power and connectivity has both changed society in innumerable ways, and also tends to lead to said powerful computers ending up dropped on the ground or into toilets. Repairs are often limited to screen replacement or exchanging broken modules, but it’s possible to go much further.

The phone is an iPhone 7, which a service center reported had issues with the CPU, and the only fix was a full mainboard replacement. [The Kardi Lab] weren’t fussed, however, and got to work. The mainboard is installed in a CNC fixture, and the A10 CPU is delicately milled away, layer by layer. A scalpel and hot air gun are then used for some further cleanup of the solder pads. Some conductivity testing to various pads is then carried out, for reasons that aren’t entirely clear.

At this point, a spare A10 CPU is sourced, and a stencil is used to apply solder paste or balls – it is not immediately obvious which. The new chip is then reflowed on to the mainboard, and the phone reassembled. The device is then powered on and shown to be functional.

It’s an impressive repair, and shows that modern electronics isn’t so impossible to fix – as long as you have the right tools to hand. The smart thing is, by using the CNC machine with a pre-baked program, it greatly reduces the labor required in the removal stage, making the repair much more cost-effective. The team are particularly helpful, linking to the tools used to pull off the repair in the video description. We’ve seen similar hacks, too – such as upgrading an iPhone’s memory.  Video after the break.

[Thanks to Nikolai for the tip!]

Continue reading “CNC Mill Repairs IPhone 7”

Addressable 7-Segment Displays May Make Multiplexing A Thing Of The Past

[Sean Hodgins] has a knack for coming up with simple solutions that can make a big difference, but this is one of those “Why didn’t I think of that?” things: addressable seven-segment LED displays.

[Sean]’s design is basically a merging of everyone’s favorite Neopixel RGB LED driver with the ubiquitous seven-segment display. The WS2811 addressable RGB driver chip doesn’t necessarily have to drive three different color LEDs – it can drive three segments of the same display. With three of the chips on a single board, all seven segments plus the decimal point of a display can be controlled over a single data line. No more shift registers, no more multiplexing. And as a nice touch, individual displays can be ganged together with connectors on the back of each module. [Sean] has some code to support the display but is looking for someone to build a standalone library for it, so you might want to pitch in. Yes, he plans to sell the boards in his shop, but as with all his projects, this one is open source and everything you need to build your own is up on GitHub. The brief video below shows a few daisy-chained displays in action.

Like many of [Sean]’s designs, including this Arduino rapid design board, this is a simple way to get a tedious job done, and it wrings a lot of functionality from a single IO pin.

Continue reading “Addressable 7-Segment Displays May Make Multiplexing A Thing Of The Past”