34C3: Vintage Verification, Stop Nuclear War With A 6502

Our better-traveled colleagues having provided ample coverage of the 34C3 event in Leipzig just after Christmas, it is left to the rest of us to pick over the carcass as though it was the last remnant of a once-magnificent Christmas turkey.  There are plenty of talks to sit and watch online, and of course the odd gem that passed the others by.

It probably doesn’t get much worse than nuclear conflagration, when it comes to risks facing the planet. Countries nervously peering at each other, each jealously guarding their stocks of warheads. It seems an unlikely place to find a 34C3 talk about 6502 microprocessors, but that’s what [Moritz Kütt] and [Alex Glaser] managed to deliver.

Policing any peace treaty is a tricky business, and one involving nuclear disarmament is especially so. There is a problem of trust, with so much at stake no party is anxious to reveal all but the most basic information about their arsenals and neither do they trust verification instruments manufactured by a state agency from another player. Thus the instruments used by the inspectors are unable to harvest too much information on what they are inspecting and can only store something analogous to a hash of the data they do acquire, and they must be of a design open enough to be verified. This last point becomes especially difficult when the hardware in question is a modern high-performance microprocessor board, an object of such complexity could easily have been compromised by a nuclear player attempting to game the system.

We are taken through the design of a nuclear weapon verification instrument in detail, with some examples and the design problems they highlight. Something as innocuous as an ATtiny microcontroller seeing to the timing of an analogue board takes on a sinister possibility, as it becomes evident that with compromised code it could store unauthorised information or try to fool the inspectors. They show us their first model of detector using a Red Pitaya FPGA board, but make the point that this has a level of complexity that makes it unverifiable.

The gamma ray energy spectrum of a cobalt-60 source as seen from an Apple II.
The gamma ray energy spectrum of a cobalt-60 source as seen from an Apple II.

Then comes the radical idea, if the technology used in this field is too complex for its integrity to be verified, what technology exists at a level that can be verified? Their answer brings us to the 6502, a processor in continuous production for over 40 years and whose internal structures are so well understood as to be de facto in the public domain. In particular they settle upon the Apple II home computer as a 6502 platform, because of its ready availability and the expandability of [Steve Wozniak]’s original design. All parties can both source and inspect the instruments involved.

If you’ve never examined a nuclear warhead verification device, the details of the system are fascinating. We’re shown the scintillation detector for measuring the energies present in the incident radiation, and the custom Apple II ADC board which uses only op-amps, an Analog Devices flash ADC chip, and easily verifiable 74-series logic. It’s not intentional but pleasing from a retro computing perspective that everything except perhaps the blue LED indicator could well have been bought for an Apple II peripheral back in the 1980s. They then wrap up the talk with an examination of ways a genuine 6502 system could be made verifiable through non-destructive means.

It is not likely that nuclear inspectors will turn up to the silos with an Apple II in hand, but this does show a solution to some of the problems facing them in their work and might provide pointers towards future instruments. You can read more about their work on their web site.

Henrietta Lacks And Immortal Cell Lines

In early 1951, a woman named Henrietta Lacks visited the “colored ward” at Johns Hopkins hospital for a painful lump she found on her cervix. She was seen by Dr. Howard W. Jones, who indeed found a tumor growing on the surface of her cervix. He took a tissue sample, which confirmed Henrietta’s worst fears: She had cancer.

The treatment at the time was to irradiate the tumor with radium tubes placed in and around the cervix. The hope was that this would kill the cancerous cells while preserving the healthy tissue. Unbeknownst to Henrietta, a biopsy was taken during her radium procedure. Slivers of her tumor and of healthy cervix cells were cut away. The cancer cells were used as part of a research project. Then something amazing happened: the cancerous cells grew and continued to grow outside of her body.

As Henrietta herself lay dying, the HeLa immortal cell line was born. This cell line has been used in nearly every aspect of medical research since the polio vaccine. Millions owe their lives to it. Yet, Henrietta and her family never gave consent for any of this. Her family was not informed or compensated. In fact, until recently, they didn’t fully grasp exactly how Henrietta’s cells were being used.

Continue reading “Henrietta Lacks And Immortal Cell Lines”

First Light: The Story Of The Laser

Lasers are such a fundamental piece of technology today that we hardly notice them. So cheap that they can be given away as toys and so versatile that they make everything from DVD players to corneal surgery a reality, lasers are one of the building blocks of the modern world. Yet lasers were once the exclusive province of physicists, laboring over expansive and expensive experimental setups that seemed more the stuff of science fiction than workhouse tool of communications and so many other fields. The laser has been wildly successful, and the story of its development is an intriguing tale of observation, perseverance, and the importance of keeping good notes.

Continue reading “First Light: The Story Of The Laser”

3D Printing The Final Frontier

While down here there’s room for debate about the suitability of 3D printing for anything more serious than rapid prototyping, few would say the same once you’ve slipped the surly bonds of Earth. With 3D printing, astronauts would have the ability to produce objects and tools on-demand from a supply of inert raw building materials. Instead of trying to pack every conceivable spare part for a mission to Mars, replacements (assuming a little forward thinking on the part of the spacecraft designers) can be made to order out of the stock of raw plastic or metal kept on-board. The implications of such technology for deep space travel or off-world settlement simply cannot be overstated.

In the more immediate future, 3D printing can be used to rapidly develop and deploy unmanned spacecraft. Tiny satellites (referred to as CubeSats) could be printed, assembled, and deployed by astronauts already in orbit. Innovations such as these could allow science missions to be planned and executed in months instead of years, and at a vastly reduced cost.

Continue reading “3D Printing The Final Frontier”

Living On The Moon: The Challenges

Invariably when we write about living on Mars, some ask why not go to the Moon instead? It’s much closer and has a generous selection of minerals. But its lack of an atmosphere adds to or exacerbates the problems we’d experience on Mars. Here, therefore, is a fun thought experiment about that age-old dream of living on the Moon.

Inhabiting Lava Tubes

Lava tube with collapsed pits near Gruithuisen crater
Lava tube with collapsed pits near Gruithuisen crater

The Moon has even less radiation protection than Mars, having practically no atmosphere. The lack of atmosphere also means that more micrometeorites make it to ground level. One way to handle these issues is to bury structures under meters of lunar regolith — loose soil. Another is to build the structures in lava tubes.

A lava tube is a tunnel created by lava. As the lava flows, the outer crust cools, forming a tube for more lava to flow through. After the lava has been exhausted, a tunnel is left behind. Visual evidence on the Moon can be a long bulge, sometimes punctuated by holes where the roof has collapsed, as is shown here of a lava tube northwest from Gruithuisen crater. If the tube is far enough underground, there may be no visible bulge, just a large circular hole in the ground. Some tubes are known to be more than 300 meters (980 feet) in diameter.

Lava tubes as much as 40 meters (130 feet) underground can also provide thermal stability with a temperature of around -20°C (-4°F). Having this stable, relatively warm temperature makes building structures and equipment easier. A single lunar day is on average 29.5 Earth days long, meaning that we’ll get around 2 weeks with sunlight followed by 2 weeks without. During those times the average temperatures on the surface at the equator range from 106°C (224°F) to -183°C (-298°F), which makes it difficult to find materials to withstand that range for those lengths of time.

But living underground introduces problems too.

Continue reading “Living On The Moon: The Challenges”

AMSAT MPPT Goes To Infinity And Beyond

AMSAT, the Radio Amateur Satellite Corporation, joined forces with students from Rochester Institute of Technology to create a MPPT attached to a Fox-1B CubeSat. It successfully launched into orbit on November 18th strapped to the back of a Delta II rocket. This analog MPPT, or Maximum Power Point Tracker, is used for optimizing the draw of a power cell in correspondence to the output of solar panels on the 10cm x 10cm satellite. In a nutshell, this works by matching the voltage of the two together. If you haven’t gotten a chance to play around with one of these first hand, Hackaday’s own [Elliot Williams] wrote up a thorough explanation of the glorious MPPT’s efficiency.

This little guy is currently hurtling along in an orbit every 90 minutes. During each of these elliptical trajectories, the satellite undergoes brutal heating and cooling cycles. The team calculated that this package will undergo a total of 29,200 orbits around Earth during its 5 year mission. This means that there are 29,200 tests for it to crack — quite literally — under pressure. To add another level of difficulty, the undergrad team didn’t have funding for automated board assembly. This meant that they had to hand solder over 400 micro components onto this board, adding additional human error to be accounted for in the likelihood of a failure. But so far, this puppy is going strong. This truly shows the struggles that can be overcome with a little elbow grease, hard work, and plain ‘ole good engineering.

Continue reading “AMSAT MPPT Goes To Infinity And Beyond”

These Are The Top Projects In The 2017 Hackaday Prize

For the last eight months, Hackaday has been running the greatest hardware competition on Earth. The Hackaday Prize is a challenge to Build Something That Matters, make an impact, and create the hardware that will transform the world. These projects range from reliable utensils for the disabled, a way to clean drinking water for rural villages, refreshable Braille displays, and even a few high voltage Tesla coil hats. The Hackaday Prize is the preeminent hardware hackathon with a goal of making the world a better place, and this weekend we’re going to see the fruits of everyone’s labor.

Watch It Live

We will announce the winners of the Hackaday Prize live on stage at the Hackaday Superconference this weekend. Even if you can’t make it to the conference, you can join in by watching the livestream (broadcast on YouTube and Facebook) and by joining the Supercon chat room.

What the Judges Have to Say

Over the last few weeks, our fantastic team of judges have been combing over the finalists in the Hackaday Prize. We’ve put together this video roundup with judges discussing the top ten finishers:

https://www.youtube.com/watch?v=bniJs6i6qZE

These ten projects are the best the Hackaday Prize has to offer, and one of these projects will walk away with the Grand Prize of $50,000 USD. The second, third, fourth, and fifth place winners will take away $20,000, $15,000, $10,000 and $5,000, respectively. The top ten projects in the Hackaday Prize are, in no particular order:

 

5 Top Finishers for Best Product

The Hackaday Prize isn’t just about finding the best projects. We’re also looking for the best products. For that, the Hackaday Prize includes a Best Product award. This promises to awaken the hardware entrepreneurs to build a manufacturable thing that will shake up an industry. Here’s an overview of the five top finishers in the Best Product Category:

From a field of the twenty best product finalists entered into the Hackaday Prize our fantastic panel of judges have winnowed these down to five incredible finalists. They are, in no particular order:

The winner of the Best Product competition will walk away with $30,000 USD and an opportunity to interview for a residency at the Supplyframe Design Lab. Here, the hackers behind the Best Product will have a materials budget, mentoring, and access to some world-class tools that will enable them to turn their prototype into a real product.

These are the best projects and products the 2017 Hackaday Prize has to offer, and we couldn’t ask for more. Watch live as the Hackaday Prize is awarded tomorrow at 6:30pm Pacific. It’s going to be a blast, and a few lucky projects will take away a pile of prize money and the respect of their peers. It really doesn’t get better than that.