An AMD GPU plugged into an ATX PSU and Raspberry PI CM4

Raspberry Pi With Some Serious Graphical Muscle

[Jeff Geerling] routinely tinkers around with Raspberry Pi compute module, which unlike the regular RPi 4, includes a PCI-e lane. With some luck, he was able to obtain an AMD Radeon RX 6700 XT GPU card and decided to try and plug it into the Raspberry Pi 4 Compute Module.

While you likely wouldn’t be running games with such as setup, there are many kinds of unique and interesting compute-based workloads that can be offloaded onto a GPU. In a situation similar to putting a V8 on a lawnmower, the Raspberry Pi 4 pulls around 5-10 watts and the GPU can pull 230 watts. Unfortunately, the PCI-e slot on the IO board wasn’t designed with a power-hungry chip in mind, so [Jeff] brought in a full-blown ATX power supply to power the GPU. To avoid problems with differing ground planes, an adapter was fashioned for the Raspberry Pi to be powered from the PSU as well. Plugging in the card yielded promising results initially. In particular, Linux detected the card and correctly mapped the BARs (Base Address Register), which had been a problem in the past for him with other devices. A BAR allows a PCI device to map its memory into the CPU’s memory space and keep track of the base address of that mapped memory range.

AMD kindly provides Linux drivers for the kernel. [Jeff] walks through cross-compiling the kernel and has a nice docker container that quickly reproduces the built environment. There was a bug that prevented compilation with AMD drivers included, so he wasn’t able to get a fully built kernel. Since the video, he has been slowly wading through the issue in a fascinating thread on GitHub. Everything from running out of memory space for the Pi to PSP memory training for the GPU itself has been encountered.

The ever-expanding capabilities of the plucky little compute module are a wonderful thing to us here at Hackaday, as we saw it get NVMe boot earlier this year. We’re looking forward to the progress [Jeff] makes with GPUs. Video after the break.

Continue reading “Raspberry Pi With Some Serious Graphical Muscle”

Building A Big Ol’ Powerful Wheelbarrow

Sometimes you’ve gotta haul big heavy loads around a wide area. Regular wheelbarrows are fine, but it can quickly grow tiring when one has to make multiple trips. [Workshop from Scratch] instead elected to build a powered wheelbarrow, with plenty of grunt to shift loads about.

The build is absolutely from the ground up, welded up from sections of steel RHS, and given rear steering for plenty of maneuverability. The actual job of steering is handled by a rack repurposed from automotive use, set up with a single-sided attachment to the rear wheel assembly. It’s quite a neat and tidy way of doing the job, and seems to work well. Drive is sent to the front wheels through a hydrostatic lawnmower transmission. A 17-horsepower engine provides plenty of grunt for the job at hand, even coming with electric start already fitted for the ultimate in ease-of-use.

It’s impressive to see just how much of the rig was put together from raw materials; even the fuel tank was fabricated in steel. We’ve seen similar builds from [Workshop from Scratch] before, like this tidy bandsaw. Video after the break.

Continue reading “Building A Big Ol’ Powerful Wheelbarrow”

Hackaday Podcast 114: Eye Is Watching You, Alien Art, CNC Chainsaw, And The Galvie Flu

Hackaday editors Elliot Williams and Mike Szczys marvel at the hacks that surfaced over the past week. An eye-popping webcam hack comes in the form of an animatronic that gives that camera above your screen an eyeball to look around, an eyelid to blink with, and the skin, eyelashes, and eyebrow to complete the illusion (and make us shudder at the same time).

Dan did a deep dive on Zinc Flu — something to avoid when welding parts that contain zinc, like galvanized metals. A robot arm was given a chainsaw, leading to many hijinks; among them the headache of path planning such a machine. And we got to hear a really awesome story about resurrecting a computer game lost to obscurity, by using one of the main tools of the copyright office.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (~60 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 114: Eye Is Watching You, Alien Art, CNC Chainsaw, And The Galvie Flu”

Steam Engine Replica From LEGO

If engineering choices a hundred years ago had been only slightly different, we could have ended up in a world full of steam engines rather than internal combustion engines. For now, though, steam engines are limited to a few niche applications and, of course, models built by enthusiasts. This one for example is built entirely in LEGO as a scale replica of a steam engine originally produced in 1907.

The model is based on a 2500 horsepower triple-expansion four-cylinder engine that was actually in use during the first half of the 20th century. Since the model is built using nothing but LEGO (and a few rubber bands) it operates using a vacuum rather than with working steam, but the principle is essentially the same. It also includes Corliss valves, a technology from c.1850 that used rotating valves and improved steam engine efficiency dramatically for the time.

This build is an impressive recreation of the original machine, and can even run at extremely slow speeds thanks to a working valve on the top,  allowing its operation to be viewed in detail. Maximum speed is about 80 rpm, very close to the original machine’s 68 rpm operational speed. If you’d prefer your steam engines to have real-world applications, though, make sure to check out this steam-powered lawnmower.

Thanks to [Hari] for the tip!

Continue reading “Steam Engine Replica From LEGO”

RC Lawn Mower Cuts With Impunity

Grass is a lovely thing to have, but unfortunately it tends to grow excessively long if left unattended. Obviously, one can use a regular lawn mower, but [Daniel] of [rctestflight] decided to build something remote-control instead. (Video, embedded below.)

To get started, [Daniel] fitted X-acto blades to a brushless outrunner motor, and tested their ability to cut grass. Satisfied with the performance, he built a trailer to tow behind an RC tank mounted to such a setup, with some success. With the concept beginning to bear fruit, he went with a clean sheet design for maximum performance.

The final build relies on an RC rock-crawler chassis, fitted with a brushless motor using field oriented control for maximum torque at low speeds. This allows the RC mower to slowly push through the grass without overwhelming the cutter heads. As for the cutter heads, the final rig has eight motors, each sporting two blades to chop down long field grasses with impunity.

[Daniel] notes that it’s remarkably fun to cut the grass in this way, and is surprised not to have seen more builds in this area. (Editor’s note: he needs to read more Hackaday.) Of course, we’ve seen plenty of autonomous builds, too.

Continue reading “RC Lawn Mower Cuts With Impunity”

You Don’t Need A Weatherman To Know Which Way The Drone Blows

“How’s the weather?” is a common enough question down here on the ground, but it’s even more important to pilots. Even if they might not physically be in the cockpit of the craft they are flying. [Justin Parsons] explains how weather affects drone flights and how having API access to micro weather data can help ensure safe operations.

As drone capability and flight time increase, the missions they will fly are getting more and more complex. [Justin] uses a service called ClimaCell which has real-time, forecast, and historical weather data available across the globe. The service isn’t totally free, but if you make fewer than 1,000 calls a day you might be able to use a developer account which doesn’t cost anything.

According to [Justin], weather data can help with pre-flight planning, in-flight operations, and post-flight analysis. The value of accurate forecasting is indisputable. However, a drone or its ground controller could certainly understand real-time weather in a variety of ways and record it for later use, so the other two use cases maybe a little less valuable.

While on the subject, it seems to us that accurate forecasting could be important for other kinds of projects. Will you have enough sun to catch a charge on your robot lawnmower tomorrow? If your beach kiosk is expecting rain, it could deploy an umbrella or close some doors and shutdown for a bit.

If you insist on using a free service, the ClimaCell blog actually lists their top 8 APIs. Naturally, their service is number one, but they do have an assessment of others that seems fair enough. Nearly all of these will have some cost if you use it enough, but many of them are pretty reasonable unless you’re making a huge number of calls.

How would you use accurate micro weather data? Let us know in the comments. Then again, sometimes you want to know the weather right from your couch. Or maybe you’d like your umbrella to tell you how long the storm is going to last.

Draw On Your Lawn With This Autonomous Mower And RTK-GPS

The rise of open source hardware has seen a wide variety of laborious tasks become successfully automated, saving us humans a great deal of hassle.  Suffice to say, some chores are easier to automate than others. Take the classic case of a harmless autonomous vacuum cleaner that can be pretty dumb, bumping around the place to detect the perimeter as it traverses the room blindly with a pre-programmed sweeping pattern.

Now in principle, this idea could be extended to mowing your lawn. But would you really want a high speed rotating blade running rampant as it aimlessly ventures outside the perimeter of your lawn? The Sunray update to the Ardumower autonomous lawn mower project has solved this problem without invoking the need to lay down an actual perimeter wire. As standard consumer grade GPS is simply not accurate enough, so the solution involves implementing your very own RTK-GPS hardware and an accompanying base station, introducing centimeter-level accuracy to your mowing jobs.

RTK-GPS, also known as Carrier Phase Enhanced GPS, improves the accuracy of standard GPS by measuring the error in the signal using a reference receiver whose position is known accurately. This information is then relayed to the Ardumower board over a radio link, so that it could tweak its position accordingly. Do you need the ability to carve emojis into your lawn? No. But you could have it anyway. If that’s not enough to kick off the autonomous lawnmower revolution, we don’t know what is.

Continue reading “Draw On Your Lawn With This Autonomous Mower And RTK-GPS”