Making An Aircraft Wing Work For An Audience

Many of us will have sat and idly watched the flaps and other moving parts of an airliner wing as we travel, and it’s likely that most of you will know the basics of how an aircraft wing works. But there’s more to an aircraft wing than meets the eye, which is why the Aerospace Bristol museum has an Airbus A320 wing on display. [Chris Lymas] was part of the team which turned a surplus piece of aircraft into an interactive and working exhibit, and he told the Electromagnetic Field audience all about it in his talk Using Arduinos to Resurrect an Airliner Wing.

The talk starts with an explanation of how a variable surface wing works, and then starts to talk about the control systems employed. We’re struck with the similarity to industrial robots, in that this is a a powerful and thus surprisingly dangerous machine to be close to. The various moving surfaces are moved by a series of shafts and gearboxes, driven by a DC motor. Running the show is an Arduino Mega, which has enough interfaces for all the various limit switches.

It’s fascinating to see how the moving parts in an airliner wing work up close, and we’re impressed at the scale of the parts which keep us safe as we fly. Take a look, the video is below the break.

Continue reading “Making An Aircraft Wing Work For An Audience”

The World’s First Microprocessor: F-14 Central Air Data Computer

When the Grumman F-14 Tomcat first flew in 1970, it was a marvel. With its variable-sweep wing, twin tail, and sleek lines, it quickly became one of the most iconic jet fighters of the era — and that was before a little movie called Top Gun hit theaters.

A recent video by [Alexander the ok] details something that was far less well-documented about the plane, namely its avionics. The Tomcat was the first aircraft to use a microprocessor-driven flight system, as well as the first microprocessor unit (MPU) ever demonstrated, beating the Intel 4004 by a year. In 1971, one of the designers of the F-14’s Central Air Data Computer (CADC) – [Ray Holt] – wrote an article for Computer Design magazine that was naturally immediately classified by the Navy until released to the public in 1998.

The MPU in the CADC is called the Garrett AiResearch MP944, and consists of a number of ICs that together form a full computer. These were combined in the CADC with additional electronics to control many elements of the airplane automatically, including the weapons system and the variable-sweep wing configuration. This was considered to be essential based on experiences with the F-111 and its very complex electromechanical flight computer, which was an evolution of the 1950s-era Bendix CADC.

The video goes through the differences between the 4-bit Intel 4004 and the 20-bit MP944, questioning whether the 4004 is even really an MPU, the capabilities of the MP944 and its system architecture. Ultimately the question of ‘first’ and that of ‘what is an MPU’ will always be somewhat fuzzy depending on your definitions, but there is no denying that the MP944 was a marvel of large-scale integration.

Continue reading “The World’s First Microprocessor: F-14 Central Air Data Computer”

Hacking A Xiaomi Air Purifier’s Filter DRM To Extend Its Lifespan

When [Unethical Info] was looking at air purifiers a while back, their eye fell on a Xiaomi 4 Pro, with a purchase quickly made. Fast-forward a while and suddenly the LCD on top of the device was showing a threatening ‘0% filter life remaining’ error message. This was traced back to an NFC (NTAG213) tag stuck to the filter inside the air purifier that had been keeping track of usage and was now apparently the reason why a still rather clean filter was forcibly being rejected. Rather than give into this demand, instead the NFC tag and its contents were explored for a way to convince it otherwise, inkjet cartridge DRM-style.

While in the process of reverse-engineering the system and doing some online research, a lucky break was caught in the form of earlier research by [Flamingo Tech] on the Xiaomi Air Purifier 3, who had obtained the password-generating algorithm used with the (password-locked) NFC tag, along with the target area of the filter’s NFC tag to change. Using the UID of the NFC tag, the password to unlock the NFC tag for writing was generated, which requires nothing more than installing e.g. ‘NFC Tools’ on an NFC-capable Android/iOS smartphone to obtain the tag’s UID and reset the usage count on the filter.

A password generating tool is provided with the [Unethical Info] article, and this approach works across a range of Xiaomi air purifiers, making it an easy fix for anyone who owns such a device but isn’t quite ready yet to shell out the big bucks for a fresh DRM-ed filter. This approach also saves one from buying more NFC tags, which was the case with the previous solution.

An image of a smarphone sitting on a lightly-colored wooden table. It has a tan case surrounding it on the top 2/3, and a copper case holding a BlackBerry Q10 keyboard jutting out over the bottom of the phone.

FairBerry Brings The PKB Back To Your Smartphone

Missing the feel of physical keys on your phone, but not ready to give up your fancy new touchscreen phone? [Dakkaron] has attached a BlackBerry keyboard to a slightly more recent device.

Designed for the FairPhone 4, [Dakkaron]’s hack should be transferable to other smartphones as it connects to the phone over USB without any of that tedious mucking about with Bluetooth. There’s even a handy OpenSCAD-based generator to help you along in the customization process.

[Dakkaron] started with an Arduino Pro Micro-based implementation, but the most recent iteration uses a custom board that can be obtained partially-populated. Unfortunately, the Hirose connector for the keyboard isn’t available off-the-shelf, so you’ll have to solder that yourself if you’re planning to do this mod. Sounds like a perfect opportunity to practice your surface mount soldering skills!

If the Q10 keyboard looks familiar, it’s probably because it’s one of the most popular keyboards for small projects around here. Check out Regrowing a BlackBerry from the Keyboard Out or a LoRa Messenger with one. We’ve even seen them in a conference badge!

Cockpit of a Hawker Siddeley Trident with the moving map display

A Live Map Display In A 1960s Airliner

We tend take GPS navigation for granted these days, so it’s easy to forget that it became only available in the last few decades. Aviation navigation used to be significantly more challenging, so how was the Hawker Siddeley Trident, a 1960s airliner, fitted with a live updating map display? In a fascinating dive into aviation history the British Airliner Collection has spun up an insightful article on the magic behind these moving map displays.

Without access to satellite navigation or advanced electronics, engineers had to get creative. Enter the Trident’s moving map display, a marvel of ingenuity that predated the GPS systems. Using a combination of Doppler radar and some clever mechanics, pilots could accurately determine their position without relying on any external signals.

The system makes use of four Doppler radar beams, arranged in what was known as the Janus array. This configuration corrected for errors caused by changes in altitude or wind drift, ensuring accurate ground speed readings. The movable antennas mounted under the cabin floor could adjust its orientation to maintain alignment with the actual direction of travel, calculating drift angle precisely. Combined with compass information and flight time from a known start point to to indicate the current position with a pointer on a rolled paper map. The system was well ahead of it’s time, and significantly easier to use and more accurate than the Decca radio navigation system in use at the time.

It’s mind boggling to see the solutions engineers came up with without much of the digital technology we take for granted today. Gyroscopes for inertial navigation, the cavity magnetron for radar and radial engines were all building blocks for modern aviation.

Thanks for the tip [poiuyt]!

Could Solar-Powered Airships Offer Cleaner Travel?

The blimp, the airship, the dirigible. Whatever you call them, you probably don’t find yourself thinking about them too often. They were an easy way to get airborne, predating the invention of the airplane by decades. And yet, they suffered—they were too slow, too cumbersome, and often too dangerous to compete once conventional planes hit the scene.

And yet! Here you are reading about airships once more, because some people aren’t giving up on this most hilarious manner of air travel. Yes, it’s 2024, and airship projects continue apace even in the face of the overwhelming superiority of the airplane.

Continue reading “Could Solar-Powered Airships Offer Cleaner Travel?”

Predicting The A-Bomb: The Cartmill Affair

The cover of the infamous issue of Astounding, March 1944

There’s an upcoming movie, Argylle, about an author whose spy novels are a little too accurate, and she becomes a target of a real-life spy game. We haven’t seen the movie, but it made us think of a similar espionage caper from 1944 involving science fiction author Cleve Cartmill. The whole thing played out in the pages of Astounding magazine (now Analog) and involved several other science fiction luminaries ranging from John W. Campbell to Isaac Asimov. It is a great story about how science is — well, science — and no amount of secrecy or legislation can hide it.

In 1943, Cartmill queried Campbell about the possibility of a story that would be known as “Deadline.” It wasn’t his first story, nor would it be his last. But it nearly put him in a Federal prison. Why?  The story dealt with an atomic bomb.

Nothing New

By itself, that’s probably not a big deal. H.G. Wells wrote “The World Set Free” in 1914, where he predicted nuclear weapons. But in 1914, it wasn’t clear how that would work exactly. Wells mentioned “uranium and thorium” and wrote a reasonable account of the destructive power: Continue reading “Predicting The A-Bomb: The Cartmill Affair”