Arch Reactor Hackerspace Is Moving!

What happens when your hackerspace grows too big for its building? Well — you can either take over the other units in your building — or move to a bigger building altogether!

We toured Arch Reactor almost three years ago, which is located in St. Louis, Missouri. The present facility is 2400sqft, which over the past few years has gotten a bit cramped. They’re moving to a new building at 2215 Scott Avenue, which is over twice the size of the current facility at a whopping 5100sqft!

As you can imagine, it’s not an easy task to move a hackerspace of this size to a new building, but their community is strong and they’re still hacking away, even during the move! If your hackerspace has a move in its not-so-distant-future, you might want to take note and follow along on their blog for some lessons learned.

Continue reading “Arch Reactor Hackerspace Is Moving!”

Hackerspace Tour: Arch Reactor In St. Louis Missouri

Over this last weekend I was lucky enough to find myself in St. Louis, Missouri. Some of my favorite places in the universe are there, the city museum being one that pops into mind most frequently.  I realized I had never toured a hackerspace in St. Louis though!

A quick phone call to Arch Reactor remedied this. Even though it was Easter Sunday, they came down and gave me a tour.  The  space was quite nice with a lounge area, electronics workstations, fabrication tools and a complete wood shop. On top of the hackerspace’s pleasant atmosphere, the building also includes a fun little art-bike group called the Banana Bike Brigade,  and even has a roof-top bar made from reclaimed materials. For those of you who are into cars, in the bike shop there were several nice corvairs and a porsche 911 that appeared to be mid 80s.

If you ever get a chance to stop by, you should definitely try to visit Arch Reactor.

St. Louis Hackerspace: Arch Reactor

Here at HackaDay, we are always a fan of a group of hackers coming together to create a place to share ideas, tools, parts, and stories. A group from St. Louis called Arch Reactor have managed to secure a new location, and are having their grand opening this Saturday. From 4-10pm on the 30th, they will be hosting an open house, and showing off both the area as well as some personal projects. We plan on being there to cover it, as well as support a hackerspace that is close to home for a couple of us.

They are located on the second floor of:

904 Cherokee St.
St Louis, MO 63118

and feel free to check out their location page, as well as their main web site.

Edit: Thanks to [kamikazejoe] from the Arch Reactor forums for pointing out the logo issue. Whoops.

How Germany’s Troubled Pebble Bed Reactor Came Of Age In China

Although the concept of nuclear fission is a simple and straightforward one, the many choices for fuel types, fuel design, reactor configurations, coolant types, neutron moderator or reflector types, etc. make that nuclear fission reactors have blossomed into a wide range of reactor designs, each with their own advantages and disadvantages. The story of the pebble bed reactor (PBR) is among the most interesting here, with its development winding its way from the US Manhattan Project over the Atlantic to Germany’s nuclear power industry during the 1960s, before finding a welcoming home in China’s rapidly growing nuclear power industry.

As a reactor design, PBRs do not use fuel rods like most other nuclear reactors, but rather spherical fuel elements (‘pebbles’) that are inserted at the top of the reactor vessel and extracted at the bottom, allowing for continuous refueling, while helium acts as coolant. With a strong negative temperature coefficient, the design should be extremely safe, while providing high-temperature steam that can be used for applications that otherwise require a coal boiler or gas turbine.

With China recently having put its twin-PBR HTR-PM plant into commercial operation, why is it that it was not the US, Germany or South Africa to first commercialize PBRs, but relative newcomer China?

Continue reading “How Germany’s Troubled Pebble Bed Reactor Came Of Age In China”

Japan’s JT-60SA Generates First Plasma As World’s Largest Superconducting Tokamak Fusion Reactor

Comparison of toroidal field (TF) coils from JET, JT-60SA and ITER (Credit: QST)
Comparison of toroidal field (TF) coils from JET, JT-60SA and ITER (Credit: QST)

Japan’s JT-60SA fusion reactor project announced first plasma in October of this year to denote the successful upgrades to what is now the world’s largest operational, superconducting tokamak fusion reactor. First designed in the 1970s as Japan’s Breakeven Plasma Test Facility, the JT-60SA tokamak-based fusion reactor is the latest upgrade to the original JT-60 design, following two earlier upgrades (-A and -U) over its decades-long career. The most recent upgrade matches the Super Advanced meaning of the new name, as the new goal of the project is to investigate advanced components of the global ITER nuclear fusion project.

Originally the JT-60SA upgrade with superconducting coils was supposed to last from 2013 to 2020, with first plasma that same year. During commissioning in 2021, a short circuit in the poloidal field coils caused a lengthy investigation and repair, which was completed earlier this year. Although the JT-60SA is only using hydrogen and later deuterium as its fuel rather than the deuterium-tritium (D-T) mixture of ITER, it nevertheless has a range of research objectives that allow for researchers to study many aspects of the ITER fusion reactor while the latter is still under construction.

Since the JT-60SA also has cooled divertors, it can sustain plasma for up to 100 seconds, to study various field configurations and the effect this has on plasma stability, along with a range of other parameters. Along with UK’s JET, China’s HL-2M and a range of other tokamaks at other facilities around the world, this should provide future ITER operators with significant know-how and experience long before that tokamak will generate its first plasma.

The Integral Molten Salt Reactor And The Benefits Of Having A Liquid Fission Reactor

Although to most the term ‘fission reactor’ brings to mind something close to the commonly operated light-water reactors (LWRs) which operate using plain water (H2O) as coolant and with sluggish, thermal neutrons, there are a dizzying number of other designs possible. Some of these have been in use for decades, like Canada’s heavy water (D2O) reactors (CANDU), while others are only now beginning to take their first step towards commercialization.

These include helium-cooled, high-temperature reactors like China’s HTR-PM, but also a relatively uncommon type developed by Terrestrial Energy, called the Integral Molten Salt Reactor (IMSR). This Canadian company recently passed phase 2 of the Canadian Nuclear Safety Commission’s (CNSC) pre-licensing vendor review. What makes the IMSR so interesting is that as the name suggests, it uses molten salts: both for coolant and the low-enriched uranium fuel, while also breeding fuel from fertile isotopes that would leave an LWR as part of its spent fuel.

So why would you want your fuel to be fluid rather than a solid pellet like in most reactors today?

Continue reading “The Integral Molten Salt Reactor And The Benefits Of Having A Liquid Fission Reactor”

Detecting Anti-Neutrinos From Distant Fission Reactors Using Pure Water At SNO+

Although neutrinos are exceedingly common, their near-massless configuration means that their presence is rather ephemeral. Despite billions of them radiating every second towards Earth from sources like our Sun, most of them zip through our bodies and this very planet without ever interacting with either. This property is also what makes studying these particles that are so fundamental to our understanding so complicated. Fortunately recently published results by researchers behind the SNO+ neutrino detector project shows that we may see a significant bump in our neutrino detection sensitivity.

The Sudbury Neutrino Detector (Courtesy of SNO)
The Sudbury Neutrino Detector (Courtesy of SNO)

In their paper (preprint) in APS Physical Review Letters, the researchers describe how during the initial run of the new SNO+ neutrino detector they were able to detect anti-neutrinos originating from nuclear fission reactors over 240 kilometers away, including Canadian CANDU and US LWR types. This demonstrated the low detection threshold of the  SNO+ detector even in its still incomplete state between 2017 and 2019. Filled with just heavy water and during the second run with the addition of nitrogen to keep out radioactive radon gas from the surrounding rock of the deep mine shaft, SNO+ as a Cherenkov detector accomplished a threshold of 1.4 MeV at its core, more than sufficient to detect the 2.2 MeV gamma radiation from the inverse beta decays (IBD) that the detector is set up for.

The SNO+ detector is the evolution of the original Sudbury Neutrino Observatory (SNO), located 2.1 km below the surface in the Creighton Mine. SNO ran from 1999 to 2006, and was part of the effort to solve the solar neutrino problem, which ultimately revealed the shifting nature of neutrinos via neutrino oscillation. Once fully filled with 780 tons of linear alkylbenzene as a scintillator, SNO+ will investigate a number of topics, including neutrinoless double beta decay (Majorana fermion), specifically the confounding question regarding whether neutrinos are its own antiparticle or not

The focus of SNO+ on nearby nuclear fission reactors is due to the constant beta decay that occurs in their nuclear fuel, which not only produces a lot of electron anti-neutrinos. This production happens in a very predictable manner due to the careful composition of nuclear fuel. As the researchers noted in their paper, SNO+ is accurate enough to detect when a specific reactor is due for refueling, on account of its change in anti-neutrino emissions. This is a property that does not however affect Canadian CANDU PHWRs, as these are constantly refueled, making their neutrino production highly constant.

Each experiment by SNO+ produces immense amounts of data (hundreds of terabytes per year) that takes a while to process, but if these early results are anything to judge by, then SNO+ may progress neutrino research as much as SNO and kin have previously.