80’s Smartwatch Finally Plays Tetris

While the current generation of smartwatches have only been on the market for a few years, companies have been trying to put a computer on your wrist since as far back as the 80s with varying degrees of success. One such company was Seiko, who in 1984 unveiled the UC-2000: a delightfully antiquated attempt at bridging the gap between wristwatch and personal computer. Featuring a 4-bit CPU, 2 KB of RAM, and 6 KB of ROM, the UC-2000 was closer to a Tamagotchi than its modern day counterparts, but at least it could run BASIC.

Dumping registers

Ever since he saw the UC-2000 mentioned online, [Alexander] wanted to get one and try his hand at developing his own software for it. After securing one on eBay, the first challenge was getting it connected up to a modern computer. (Translated from Russian here.) [Alexander] managed to modernize the UC-2000’s novel induction based data transfer mechanism with help from a ATtiny85, which allowed him to get his own code on the watch, all that was left was figuring out how to write it.

With extremely limited published information, and no toolchain, [Alexander] did an incredible job of figuring out the assembly required to interact with the hardware. Along the way he made a number of discoveries which set his plans back, such as the fact that there is no way to directly control individual pixels on the screen; all graphics would have to be done with the built-in symbols.

The culmination of all this hard work? Playing Tetris, naturally. Though [Alexander] admits that limitations of the device’s hardware meant the game had to be simplified a bit, he’s almost certainly having more fun than any of the UC-2000’s original owners did with this device. He’s setup a GitHub repository for anyone who wishes to join him in this brave new world of vintage wrist computing.

[Alexander] isn’t the only one experimenting with fringe wearable computers. We’ve seen our fair share of interesting smartwatches, featuring everything from novel input methods to complete scratch-builds.

Continue reading “80’s Smartwatch Finally Plays Tetris”

The Art Of The Silicon Chip

If you have followed the group of reverse engineers whose work on classic pieces of silicon we feature regularly here at Hackaday, you may well be familiar with the appearance of the various components that make up their gates and other functions. What you may not be familiar with, however, are the features that can occasionally be found which have no function other than the private amusement of the chip designers themselves. Alongside the transistors, resistors, and interconnects, there are sometimes little pieces of artwork inserted into unused spaces on the die, visible only to those fortunate enough to own a powerful microscope.

Fortunately those of us without such an instrument can also take a look at these works, thanks to the Smithsonian Institution, who have brought together a gallery of them on the web as part of their chip collection. In it we find cartoon characters such as Dilbert, favourites from children’s books such as Waldo, and the Japanese monster Godzilla. There are animals, cows, a leopard, a camel, and a porpoise, and of course company logos aplenty.

In a sense, these minuscule artworks are what our more strident commenters might describe as Not A Hack, but to dismiss them in such a manner would be to miss their point. Even in an age of huge teams of integrated circuit designers working with computerized tools rather than the lone geniuses of old with their hand drafting, we can still see little flashes of individuality with no practical or commercial purpose and with no audience except a very few. And we like that.

Also take a look at the work of [Ken Shirriff] for a masterclass in IC reverse engineering.

Amazing 3D-Scanner Teardown and Rebuild

0_10ea1b_776cdc71_origPour yourself a nice hot cup of tea, because [iliasam]’s latest work on a laser rangefinder (in Russian, translated here) is a long and interesting read. The shorter version is that he got his hands on a broken laser security scanner, nearly completely reverse-engineered it, got it working again, put it on a Roomba that was able to map out his apartment, and then re-designed it to become a tripod-mounted, full-room 3D scanner. Wow.

The scanner in question has a spinning mirror and a laser time-of-flight ranger, and is designed to shut down machinery when people enter a “no-go” region. As built, it returns ranges along a horizontal plane — it’s a 2D scanner. The conversion to a 3D scanner meant adding another axis, and to do this with sufficient precision required flipping the rig on its side, salvaging the fantastic bearings from a VHS machine, and driving it all with the surprisingly common A4988 stepper driver and an Arduino. A program on a PC reads in the data, and the stepper moves another 0.36 degrees. The results speak for themselves.

This isn’t [iliasam]’s first laser-rangefinder project, naturally. We’ve previously featured his homemade parallax-based ranger for use on a mobile robot, which is equally impressive. What amazes us most about these builds is the near-professional quality of the results pulled off on a shoestring budget.

Continue reading “Amazing 3D-Scanner Teardown and Rebuild”

Rebonding an IC to Save Tatakae! Big Fighter

Preserving old arcade games is a niche pastime that can involve some pretty serious hacking skills. If the story here were just that someone pulled the chip from a game, took it apart, and figured out the ROM contents, that’d be pretty good. But the real story is way stranger than that.

Apparently, a bunch of devices were sent to a lab to be reverse engineered and were somehow lost. Nearly ten years later, the devices reappeared, and another group has taken the initiative to recover their contents. The chip in question was part of a 1989 arcade game called Tatakae! Big Fighter, and it had been hacked. Literally hacked. Like with an ax or something worse.

You can read the story of how the contents were recovered. You shouldn’t try this at home without a vent hood and other safety gear. However, they did rebond wires to the device using a clever trick and no exotic equipment (assuming you have some fairly good optical microscopes and a microprobe on a lens positioner).

Continue reading “Rebonding an IC to Save Tatakae! Big Fighter”