Servo Socks Is A Brilliantly Simple Solution For Quick Hacking

[Dan Kitchen] has a great solution for making servos easy to hack.

Every hacker has a drawer full of servo’s somewhere. Just about every project that uses them starts off by measuring the spacing and designing some obscure bracket to meet that unique motor’s size. However, what if you could use common wood screws and hand tools to use them right away?

[Dan]’s solution is to make a case from recycled HDPE lumber, the same sort of material you might buy for a deck. This material is sandable, carvable, and can be drilled into. The case encapsulates the servo motor completely. One side has a freewheeling wooden disk and the other side’s disk is attached to the motor.  Now when you need motion you can work with the servo as if it were just a block of wood. Very cool.

[Dan] appears to be moving to make this a commercial product and we can see why. Though we see no reason why an enterprising hacker or hackerspace couldn’t come up with their own variations on this great idea.

SmallKat: An Adorable And Dynamic Robot

SmallKat is a cute little robot with a lot of capability designed around teaching and experimenting with dynamic robot control. It’s a shame we haven’t covered SmallKat yet, as it’s both a finalist in the 2019 Hackaday Prize and was one of the Bootstrap Winners this year.

Many hobby robots move by repeating a pre-programmed sequence of movements. Most hexapods for example follow this line of thought. However, robots like Spot and the MiniCheetah show a different world where robots determine the locations of their limbs by their current state, the measured state of their environment, and some imagined future. These robots are capable of so much more than their predecessors.

However, even a cost-effective version of these robots climb into the tens of thousands of dollars at a steep curve. SmallKat will help there: based around hobby servos and an ESP32 the hardware stays affordable. Data can be streamed to a much larger computer for experimentation which saves on some of the weight that supporting a larger device like a Pi would add.

This device will let students experiment with all kinds of dynamic models and even machine learning-based movements without breaking the bank. There’s even a nice software studio for experimentation to aid in the learning process.  Video of it shuffling around after the break.

Continue reading “SmallKat: An Adorable And Dynamic Robot”

Forget Printing Labels For Your Bathtub Hooch, Why Not Engrave The Bottle?

[BlueFlower] sends in this cool wine bottle engraver. It’s a simple machine that reminds us of the infamous EggBot. One axis can move in x and z while the other axis rotates the work piece. The EggBot works in spherical coordinates while this one lives in a cylindrical world.

The base of the device appears to be an older project of [BlueFlower]’s an XY-Plotter/Cutter. The plotter itself is a very standard twin-motor gantry design. In fact, it looks like when the machine is converted to bottle engraving, the drivers which previously moved the Y-axis are re-purposed to move two rollers. The rollers themselves are suspiciously similar to those found inside 2D printers. We all have them kicking around our junk drawers, but it’s rare to see them actually being used. The spindled is just a DC motor with a ball grinder coupled to the end.

As for the final result, we have to admit that the engraved bottles are quite fetching. Catch a video of the engraving process after the break.

Continue reading “Forget Printing Labels For Your Bathtub Hooch, Why Not Engrave The Bottle?”

Bee Minder Proves Not Even Bees Are Safe From Surveillance States

We all know how important bees are to our ecosystems and [Kris Winer]’s bee monitor provides a great way to monitor these amazing but delicate creature’s habitats, hopefully alerting us before a disaster strikes a vital hive.

The board is based around LoRa sensor tile called Cicada but redesigned to make it smaller and cheaper. LoRa is a popular low-power wide-area network running on sub-Ghz bands designed exactly for applications like this. This board has a nice suite of sensors. It can detect UVA, UVB, and the visible spectrum of light. It can also observe the temperature, pressure, and humidity. Importantly for bees, the accelerometer can detect the various vibrations of the hive as well as disaster events like vandalism.

The data is all logged into a Cayenne dashboard which the prospective farmer could view and analyze from anywhere. [Kris] mentions that the board is relatively easy to re-spin with a different sensor suite depending on the application. Technology like this can go along way towards a more sustainable future.

Protect Your Batteries Before You Wreck Your Batteries

[Jan] is solving a problem many of us have had, deeply discharging our project’s batteries and potentially damaging the cells.

His board can handle batteries from 6 to 34 volts and supports both LiPo or Lion batteries. The board can be flexible about its cut-off voltage. It also has a feature we really like; the user can set a delay before it shuts off the battery: useful in cases where a heavy peak current draw causes the battery to operate at a lower-than-threshold voltage for a few seconds. Once the board is shut down it takes a manual reset to allow power to be drawn again.

His latest iteration of the board is an impressive 1 sq. inch in size! This can fit in just about any project and it’s even flexible in the choice of battery connector. Next time we have a high current draw project with expensive batteries or maybe a monitoring device that’s expected to run a long time we may throw one of these boards in there just to be safe.

A CNC Hacked Together In Pajamas

Sometimes you just gotta sit down and hack something together. Forget the CAD and the cool software toys; just hammer away until you have something working. That’s how [bobricus] ended up with this cute little laser engraver anyway.

For under $300 US of parts and a few nights working in his pajamas, the aptly named, pajama micro laser engraver is a pretty nice little machine for its class. Not having the space for a full size machine and not necessarily needing its capabilities he aimed to produce something compact.

The frame is aluminium extrusion, the movement is core-XY an H-bot on linear rails, and it appears to just be a grbl board with a Chinese laser module on it. He took a bit of care to make the frame a cube which allows him to easily vent the fumes from the little unit. There’s even a small air pump to blow the off-gas from the cutting away from the laser.

All in all a nice little hack useful for all sorts of things from solder masks to cutting wood veneers. You can see it zipping around in the video after the break.


Continue reading “A CNC Hacked Together In Pajamas”

Sixi 2, An Open Source 3D Printable 6 Axis Robot Arm

[Dan Royer] is taking some inspiration from Prusa’s business and is trying to build the same sort of enterprise around open source 3D printable robot arms. His 6 axis robot arm is certainly a strong first step on that road. 

As many people have learned, DIY robot arms are pretty difficult.  [Dan]’s arm has the additional complexity of being 3D printable with the ambitious goal of managing a 2kg payload at 840mm of reach. He’s already made significant progress. There’s a firmware, set of custom electronics, and a Fusion 360 project anyone can download and checkout. You can even control it with an Xbox controller.

The main board is an Arduino shield which outputs step and direction signals to stepper drivers. The gears are cycloidal and it appears there’s even some custom machining going on. When the parts are all laid out it becomes clear just how much effort has been put into this design.

It should be a pretty nice robot and might finally spur some of us to build the Iron Man style robot assistants we’ve always wanted. You can see the robot in action after the break.

Continue reading “Sixi 2, An Open Source 3D Printable 6 Axis Robot Arm”