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Abstract—The Internet of Things (IoT) is a growing market
which provides several benefits for industry, governments and
end users. However, the increasing use of embedded and perva-
sive devices introduces new vulnerabilities in the network. In the
last years, the number of malware and exploits targeting the IoT
has grown considerably, which issues a challenge for the industry
and the academy. To further motivate this challenge, in this paper
we describe a malware piece targeting Arduino Yun, which is a
common platform used in IoT scenarios. The malware, dubbed
ArduWorm, is able to bypass all the security implemented in
Arduino by exploiting a memory corruption vulnerability and
hijack the device. Moreover, due to the architectural flaws found
in Arduino Yun, the malware is able to get the control of a
Linux-based microprocessor integrated in the device with full
privileges, which allows it to install a backdoor and spread as a
worm through the compromised network.

Index Terms—Malware, Internet of Things, Arduino, Worm,
Remote Access Tool

Type of contribution: Research in progress

I. INTRODUCTION

The Internet of Things (IoT) comprises the set of tech-
nologies, networks and architectures that allow the connection
of different embedded and pervasive devices, like wearables,
sensors or smart phones. It provides several facilities and
economical benefits to end users, companies and organiza-
tions. Nowadays, the IoT is an emerging topic in both the
industry and the academy, and it is expected that the number
of devices fabricated and used in IoT projects will exceed
the 50 billions by 20201. IoT projects are present in diverse
scenarios, including smart cities, automotive industry or Body
Area Networks (BAN), to name a few.

In the last few years, the IoT has gained the attention
of malicious actors due to several reasons. Modern smart
devices such as smart phones or tablets have substituted PCs
and laptops for a plethora of user applications like social
networking, instant messaging or e-commerce. Therefore,
these devices store a huge amount of personal and valuable
information that is attractive for attackers. Moreover, the
connection capabilities of IoT devices and the open sce-
nario where they are usually deployed offer new infection
vectors to potential adversaries. Indeed, since these devices
are usually connected between them (e.g. forming Wireless
Sensors Networks) and/or to the Internet, they are attractive
targets for botnets, and recently the concept of ”Thing-Bot”
(i.e., a compromised device used as part of a large botnet) has
gained popularity [1], [2].

One common platform used in embedded devices is Ar-
duino. Arduino is an open-source platform providing “easy-to-

1http://iot.ieee.org/newsletter/january-2016/the-rise-of-iot-why-today.html

use hardware and software intended for anyone making inte-
ractive projects” 2. The Arduino platform was originally aimed
at small electronics and micro-controller projects. Particularly,
with the increasing interest in IoT, a new board, the Arduino
Yun, was specifically designed for IoT applications. Together
with the classical Atmel AVR based Micro Controller Unit
(MCU) present in most of Arduino devices (concretely, the
ATmega32u4), the Yun is also equipped with a Atheros Micro
Processor (MPU) holding a Linux based OpenWrt operating
system. This Atheros MPU manages one Ethernet interface
and one Wifi card, which makes it a suitable device for IoT
scenarios. Both the Atmel AVR and the Atheros are connected
using a serial bus managed by a software library called Bridge.

A security analysis of the Arduino Yun shows that it con-
tains many architectural flaws. We have evaluated the attack
surface of this device, and found a critical point of exposure in
the Bridge library connecting both chips that allows to com-
promise the entire device by exploiting a memory corruption
vulnerability in the Atmega32u4 MCU. Moreover, since this
AVR-based chip has limited resources compared with modern
MCU and MPU based on ARM or x86 architectures, classical
protections against memory corruption, such as stack overflow
protection or memory layout randomization can not be easily
deployed.

In this work, we present ArduWorm, a proof-of-concept
malware that targets Arduino Yun devices. The exploitation
of a vulnerability in the Atmel MCU allows ArduWorm to
bypass the Bridge and compromise the OpenWrt to establish
a backdoor. AVR is based on a modified Harvard architecture
where the code and data memories are physically separated,
thus hindering code injection. Thus, the exploit uses code
reuse attacks (i.e., Return Oriented Programming and return-
to-lib) to benefit from a memory corruption vulnerability.
ArduWorm has reconnaissance and infection capabilities, and
it can automatically spread through neighbor nodes. While this
specimen is just a proof of concept proven in our experimental
setup, we hope that it can motivate research in the design of
defensive mechanisms for Arduino devices.

This paper is structured as follows. In Section II we review
the current state of the art in malware specific for the IoT and
provide some useful background. In Section III we present
the exploitation mechanism implemented, and in Section IV
the details of ArduWorm. Finally, in Section V we discuss
about possible countermeasures and in Section VI we present
the conclusions of the work.

2From the Arduino official website, http://www.Arduino.cc



Fig. 1. Arduino Yun

II. BACKGROUND AND RELATED WORK

This section first describes the targeted system, i.e. the
Arduino Yun, along with the AVR architecture. Then, we
overview memory corruption attacks, which form the basis of
the initial exploitation used by ArduWorm. Finally, we review
current state of the art and provide some examples of malware
targeting IoT devices from different scenarios.

A. Arduino Yun
Arduino Yun is different from other Arduino boards be-

cause it includes a preinstalled Linux distribution, and in-
tegrates advanced communication capabilities, thus offering
a powerful networked embedded system with the ease of
Arduino. Concretely, the Arduino Yun is composed of one
micro-controller board based on two separate chips, i.e. the
Atmel AVR ATmega32u4 and an Atheros AR9331 running
the OpenWrt

The two chips are connected through a serial bus managed
by a Bridge library, which is included as part of the Arduino
Library and is implemented in Python in OpenWrt. The
Bridge provides Arduino sketches with the capacity of running
shell scripts, communicate with network interfaces, and re-
ceive information from the AR9331 processor. Consequently,
this is a critical component from a security perspective: as
we show in the following, by exploiting Arduino environment
it is possible to bypass inner security mechanisms, therefore
compromising the Linux environment. Moreover, as we show
during this work, the Bridge requires no authentication in the
Linux environment, and all the commands issued from the
ATmega32u4 chip are executed with root privileges.

The integrated Atmega32u4 chip is based on the AVR archi-
tecture. AVR is a modified Harvard architecture implemented
by Atmel in 1996. It stores code and data in memory chips
that are physically separated, i.e. the Flash memory and the
data or SRAM memory (see Figure 2). The SRAM contains
the program data, the heap and the stack. A property of AVR
is that the stack starts at the highest address of the SRAM
memory, and grows towards lower addresses (i.e., a PUSH
instruction stores a new byte in the stack and decreases the
stack pointer), while the heap grows towards higher addresses,
which can lead to a heap/stack collision.

B. Memory corruption attacks
Memory corruption is probably one of the most exploited

vulnerability so far. The adversary profits from an uncon-
trolled out-of-memory error to modify the memory map and
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Fig. 2. Schematic view of AVR memories

hijack the control flow. For example, stack overflows allow
the adversary to craft a specific payload that overwrites the
return address (which is usually stored in the stack) and
gain the control of the execution. Traditionally, the next step
was to jump to an area of memory with code injected by
the adversary (i.e. shellcode) intended to perform subsequent
states in the attack (e.g. download additional code, open a
reverse shell, etc.).

With the advance in defense mechanisms that prevent code
injection, such as preventing memory to be both writable and
executable (W⊕X), code injection has become useless in
modern systems. Thus, current exploitation techniques rely on
reuse existing code from the program memory. An example
of such code-reuse attacks is return-to-lib [3], that forces the
program to execute code from imported libraries (e.g. libc),
prior setting the desired arguments. This way, an attacker
could execute arbitrary shell commands by invoking the exec
function from libc and passing as arguments the string /bin/sh
together with the desired command.

A more sophisticated code-reuse attack is Return Oriented
Programming (ROP), where the adversary forces the execution
of different pieces of code (called gadgets) ending in a ret
instruction. Thus, by carefully building a stack containing
the addresses of these gadgets, the adversary can conform
a chain that execute different pieces of code consecutively
in order to perform the desired action. The reader may find
more information about this attack in [4] or [5]. Moreover,
in Section III we describe a code reuse attack that combines
both ROP and return-to-lib in order to compromise the Bridge
of Arduino Yun.

C. Malware in IoT

During the last few years, malware in tablets and smart
phone devices has become one of the main concerns of se-
curity researchers. According to Mcafee’s 2015 threat reports
up to 1.2 million different malware pieces targeting mobile
platforms were detected [6]. A similar report published by the
AV company PandaLabs, stated that during 2015 an average
of 230.000 different samples were detected on a daily basis
[7].

An important novelty introduced by smart phones, is the
capability of connecting other devices extending the functio-
nality of the device. This is the case of several wearable
devices like activity monitors or smart watches which are
wirelessly connected to the smartphone conforming a so called
personal area network. These devices count with sensing



capabilities such as sensors or GPS systems, making them
sources of sensitive information and therefore appealing attack
targets.

Recently, Symantec researchers have proven that ran-
somware installed in a smartphone can easily move to the
paired wearables and infect them [8]. Ransomware is an
emerging threat that allows attackers to obtain economical
benefits directly from the infected users. It works by either
preventing the access to the compromised system (e.g., by
modifying the login credentials) or by hijacking the data
stored (e.g. by encrypting its contents). In any case, the
attacker claims for a ransom to free the stolen assets. Different
ransomware pieces have been released for smartphones, like
recent Android.LockerPIN which modifies the pin code of the
infected phone.

Exploits and malware targeting embedded devices such
as routers are not a new threat. However, the increasing
proliferation of smart and pervasive devices in modern so-
ciety opens a huge amount of new infection vectors. Indeed,
IoT devices use embedded hardware and firmware that are
resource constrained, often reused from other technologies.
Thus, if an adversary is able to compromise one, she may be
able to compromise several of them. Indeed, the cybersecurity
company Proofpoint presented a media press in 2014 [2]
incorporating the term Thing-bot to name the more than
100.000 compromised embedded devices that were used as
part of a big botnet used to send spam and phishing. These
attacks were issued by compromised devices such as smart
TVs, fridges, routers, etc.

Since IoT devices are remotely accessible, mostly using
protocols such as Telnet or SSH, remote exploitation has
become the primary mean to compromise these systems. Pa
et al. [1] analyzed the Telnet traffic to categorize the sources
of the packets. They showed that most of the traffic was
issued from devices such as DVR (Digital Video Recorders),
IP Cameras or Wireless routers. Moreover, by using their
proposed IOTPot (a honeypot focused on IoT threats) they
captured and categorized malware for this kind of devices.
They detected at least 43 new malware samples that targeted
embedded architectures, and, even worse, only 4 of them were
reported as malicious in VirusTotal.

Hernandez et al. [9] showed vulnerabilities in the boot
process of the Google Smart Nest Thermostat, a device aimed
at optimizing the air conditioning and heat consumption to
save energy. This device is connected to the Internet and
can be remotely configured. The firmware updates are signed
and thus the manufactures claim that the device cannot be
exploited, since signatures are verified prior to the installation
of new updates. However, if an adversary has physical access
to the device (e.g. during manufacture or transportation), then
the boot process can be modified. They proposed a bootkit
which installs a backdoor and avoids the signature verification.
Moreover, since the device is typically connected to the
home LAN, the authors showed how the Smart Nest could
use ARP spoofing attacks to perform Man-In-The-Middle
(MITM) attacks to any computer from this LAN.

SYNFul Knock [10] is a malware that affects firmware
from some Cisco Routers. This malware profits from default
or leaked credentials to install the malware and modify the

firmware. This modified firmware provides the adversary with
a backdoor (with root privileges) and listens for commands
from a C&C server. Mandiant researchers have identified that
these commands are intended to load additional modules to
be run in the router. SYNFul Knock maintains persistence
across reboots, and obfuscate the authentication with the
C&C server by using special TCP packets during the initial
triple handshake, by encapsulating the commands within non-
standard TCP payloads (see the technical report published by
Mandiant at [10] for further details).

Similarly, Linux Wifatch is a white-hat trojan [11] that
installs a backdoor in home routers by exploiting a weak
Telnet authentication. It installs a backdoor and is able to
communicate with a C&C server. However, it is considered a
white-hat piece of malware since it seems that no malicious
action is performed, and even more, it tries to hinder infection
by other malware pieces. Its source code (written in Perl) has
been recently released and is open for the community3.

An important concern in the IoT security is that the attacks
can compromise not only the data and digital assets, like in
classical PCs. Indeed, embedded systems may be physically
implanted in humans, so if they are compromised, it can
seriously harm the integrity of human beings. For example, in
2008 it was proven that pacemakers and cardiac defibrillators
were vulnerable to radio frequency attacks [12]. Thus, security
on Implantable Medical Devices (IMDs) pose an appealing
area of research that requires efforts from both the academy
and the industry [13].

The transport industry have additionally moved to the IoT.
Nowadays, cars are equipped with a endless amount of sensors
and electronic devices aiming at controlling the brakes, tires,
or even providing Internet connectivity to the car. The research
carried out by Miller and Valasek [14] (presented at Black Hat
in 2015), showed how an adversary can control remotely the
inner sensors of a car (e.g., the 2014 Jeep Cherokee was used
in their proof of concept attack). This research demonstrates
that attack surfaces for automobiles presented in prior works
[15] are actually exploitable.

The analysis and study of current state of the art in-
dicates that remote exploitation is by far the most used
infection vector. It profits from default or weak passwords,
vulnerabilities found in the device firmware or wrong con-
figurations. Additionally, the constrained resources in many
of the architectures used in these devices usually prohibits
the implementation of defense mechanisms as antivirus or
in-device firewalls. For example, embedded devices based
on the AVR architecture, such as Arduino devices, lack of
memory corruption controls like stack overflow protection
or Address Space Layout Randomization (ASLR)[16]. Thus,
it is possible to construct exploits that reuse existing code
from the firmware, allowing malicious users to perform well-
known Return Oriented Programming (ROP) or return-to-lib
attacks. For example, Francillon and Castellucia [17] proved
that using ROP they could inject code into the flash memory
of an Atmel chip based on the AVR architecture. Recently,
Habibi et al. [18] showed that a Unmanned Aerial Vehicle
(UAV), most commonly refereed as dron, can be hijacked
using the ROP to modify the flying gyroscope. In our work,

3https://gitlab.com/rav7teif/linux.wifatch



we extend these attacks and show that the entire device,
including the OpenWrt, can be compromised by exploiting
a vulnerability in the AVR chip. This allows to install further
binaries or malicious scripts that allows it to gain persistence,
install backdoors or automatically infect neighbor sensors, i.e.
turning the malware into a worm.

III. INITIAL EXPLOITATION OF ARDUINO YUN

In this section, we describe how an adversary can exploit
the Arduino Yun using using ROP and calling functions from
the Bridge library included in the main program. We assume
that the adversary can somehow get the binary loaded at the
targeted device (e.g., by physically dumping its content or
getting it from public repositories). Moreover, since the stack
in AVR is located at highest positions of the SRAM memory,
the adversary has limited space for the exploitation payload.
However, the adversary can inject larger payloads in memory
by provoking software resets of the device and exploiting
the vulnerability several times. We elaborate more on these
assumptions in next subsection. Finally, we assume that the
adversary can somehow gain the control of the program flow
by remotely exploiting a memory corruption vulnerability on
the device, namely a stack overflow. Next, we present the
attack overview and provide implementation details.

A. Exploit overview

In this section we describe the initial exploitation used
in ArduWorm. It is based on code reuse attacks. The main
goal is to call a function from the Arduino library to run
a command in the OpenWrt. However, the required function
from Arduino libraries is call by reference, i.e.: arguments
are passed as pointers to data memory. Indeed, different from
other architectures, function arguments in AVR are passed
via registers when possible and they are passed through the
stack only when the arguments are larger than the number of
available registers. Accordingly, the first step for the adversary
is to inject data in the SRAM. We perform this step using
Return Oriented Programming (ROP).

Injecting data in SRAM is limited by the size of memory
available for the exploit. The main idea is to use ROP to store
data into non-volatile areas of the SRAM memory [17], [18].
Concretely, we use a chain of gadgets (named Store data)
that allow an adversary to build a payload that load several
values in memory recursively. We provide more details of
these gadgets and how they are used in Section III-B.

The exploitation of a stack overflow has a limitation in AVR
devices. The stack is always located at the highest address of
the SRAM memory, and thus the space available to inject a
payload after overflowing the stack is significantly limited.
When a buffer is locally declared in a function, the return
address is stored at a higher position of the memory reserved
in the stack. This position may be close to the end of the
SRAM address space (see Figure 2). Thus, the adversary may
not be able to send large attack payloads as it is usually
done in ROP attacks against conventional architectures [5].
To partially overcome this issue and provide more space, the
stack pointer can be moved to the beginning of the buffer as
proposed in [18]. This way, the buffer itself can be fully used
for allocating the payload. We call the gadgets that allow to
move the stack Stack move.

Given that the amount of data injected is limited, ex-
ploiting the same vulnerability multiple times could place
the attacker in an advantage position. However, exploiting a
buffer overflow usually leaves the stack in a unpredictable
state and the attacker is usually forced to reset the device
each time to maintain the device functional and/or resume its
normal operation. In this regard, Francillon and Castellucia
[17] proposed to perform a software reset by directly jumping
to the address 0x0000 (i.e. the reset vector). However, this
approach is not suitable in modern AVR chips since it does
not guarantee that the the I/O registers are restored to their
initial state [19]. Therefore, we propose the use of a gadget,
namely Reset chip, that uses a Watchdog reset (which is one
of the reset sources used in AVR chips). More precisely, the
gadget first establishes a watchdog timer and then jumps to an
infinitive loop. When the timer expires, the watchdog provokes
a software reset.

Figure 3 depicts the schematic view of a generic data
injection attack. When the vulnerable function is called, the
return address is pushed on the stack. Thus, the attack starts
by overwriting this address with the address of the gadget
Stack move (Step 1), which pops the new address and stores
it in the memory address corresponding to the stack pointer
(SP). From there on, the buffer constitutes the new stack
(Step 2). Then, the address of the next gadget is popped
from the stack, so the first bytes of the buffer must point
to the gadget Store data (Step 3) that stores the data at a
given address (Step 4). As showed in Section III-B, both the
stored data and the SRAM memory address must be included
in the payload. Finally, when the gadget Store data returns
(Step 5), the program jumps to the gadget Reset chip (Step 6),
which performs a clean software reset of the AVR chip. The
adversary, while needed, may send new payload to exploit
the vulnerability and store additional data in consecutive
addresses. In every reboot, the .data and .bss sections of the
SRAM memory are cleared and reloaded, so if the adversary
stores the data in a memory area different from these (i.e.
the region tagged as unused in Figure 2), then data remain
persistent across reboots.

Finally, once the required data are stored in memory, the
adversary is ready to call the library function using a chain
of gadgets that perform the desired operation. First, she must
load the arguments and prepare the data required (e.g. pointers
to objects) using the data injection scheme explained above.
Second, the program flow must jump to the desired function
itself.

B. Exploit implementation in Arduino Yun

In this section, we describe the implementation of the ex-
ploit targeting Arduino Yun devices, that allows an adversary
to execute remote commands in the OpenWrt environment
(i.e.: bypassing the Bridge between the two chip-sets). The
attack comprises two phases: injection, and invocation. First,
it starts by injecting the command into SRAM memory as a
String object, and then forces the execution of the function
runShellCommand(String* cmd) from the Bridge library4 by
passing as arguments a pointer to the injected object.

4https://www.arduino.cc/en/Reference/YunProcessConstructor
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In this work, we have exploited a function (implemented
ad-hoc for the prototype) that receives data from the Bluetooth
port and stores it into a buffer, without checking its bounds.
By sending a crafted data, we are able to overwrite the return
address of the function and take control of the program flow.
Next, we explain the different settings and implementation
details of the attack.

We use a pair of gadgets used to move the Stack Pointer
(SP) to a given address5. The first gadget (pop r29; pop r28,;
ret) loads the new SP to registers r28 and r29 and the second
gadget (out 0x3e, r29; out 0x3d, r28) stores the SP in 0x3e
and 0x3f, which are actually the positions mapping the SP.
This is possible because AVR uses fixed positions of data
memory to store I/O registers, including the SP. Gadgets used
to move the stack are very frequent in AVR binaries, since
they are used to save and restore the stack within the called
functions.

To store the data in SRAM, we have found an optimal
couple of gadgets, showed in Table I. These gadgets are
included with the String library, imported by default in all
Arduino programs, show it is reasonable that the adversary
can use it at will. As these gadgets are consecutive in the
code, they can be used recursively. In the first interaction, the
gadget Load data at address 0x2c00 loads data in registers r16
and r17, and the destination address in registers r28 an r29. In
AVR, registers r28 and r29 are mapped to the register Y used
for direct addressing. Here, the gadget Store data showed
in Table I uses the fixed displacement of the Y register to
store the values from r16 and r17 in addresses Y+2 and Y+3
respectively. Because the end of the gadget Store data directly
jumps to the gadget Load data, they can be used repetitively,
as shown in Figure 4.

To perform a software reset of the AVR chip we use one
of the reset sources provided by the AVR architecture, the
Watchdog reset, which establishes a timeout and resets the
chip when it expires. Concretely, a first gadget enables the

5We only show the relevant instructions from the gadgets

Address Instructions Description
Store data

0x2bf6 std Y+3, r17 Stores the values from r17 and r18 in addresses
Y+3 and Y+4 (Y is the concatenation of the
registers r29 and r28). Then, jumps to 0x2c00.

std Y+2, r16
ldi r24, 0x01
rjmp .+2

Load data
0x2c00 pop r29 Loads the new values at r17 and r16

pop r28 and new addresses at r28 and r29
pop r17
pop r16
ret

TABLE I
GADGETS USED TO STORE DATA IN A GIVEN ADDRESS OF THE SRAM
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Fig. 4. Schematic view of a payload that inserts the command ”curl”
(0x63,0x75,0x72,0x6c) into a the address 0xef00 of SRAM memory using
the gadgets from Table I.

Watchdog (using the instruction wdr), and sets a timeout to
120ms. Then, a second gadget performs an infinitive loop,
and is intended to wait the timer to expire (this gadget, which
consists on just one instruction, is the last instruction of
every Arduino program, and represents the ”stop-program”
instruction to maintain the device in an idle state). By chain-
ing these two gadgets, the chip automatically resets an the
normal operation of the Arduino device is restored. Then,
the adversary may send a new exploit to store more data,
depending on what she wants to inject.

Finally, once the adversary stores the command to be
executed in the SRAM (e.g. “curl”, as shown in Figure
3), the exploit calls the function runShellCommand of the
Bridge Library. This function takes as argument the address
of the String object which represents the command, which is
provided in registers. We use a gadget (consisting in a set of
pop instructions) to perform such loading. Then, the program
flow should directly jump to the runShellCommand function



which uses the Bridge between the two chips to execute the
desired command in the OpenWrt. As explained before, these
commands are executed with full privileges since they are
issued by the root user.

IV. DESIGN AND BEHAVIOR OF ARDUWORM

The exploitation described in Section III shows that IoT
devices with limited resources, such as those based on AVR
architecture, can be a weak point in a IoT infrastructure. This
presents a big threat to both organizations and end users, as
devices such as Arduino Yun can be compromised and used
as entry vector to attack other devices in the same network.
Moreover, in the case of ArduWorm, the vulnerability is
specially dangerous as the attacker is able to execute arbitrary
commands in the target machines with root privileges.

Based on this initial exploitation, we built a worm namely
ArduWorm. In the next sections, we first describe the behavior
and structure of the worm, and then we provide two attack
scenarios where this worm could be specially harmful.

A. ArduWorm

ArduWorm takes advantage of the position IoT devices
usually have within a network in order to spread and infect
devices which are local to the network. ArduWorm is coded
in Python, and it includes a Remote Access Tool (RAT) for
controlling infected machines. As any other worm, ArduWorm
is composed of four main stages, namely payload execution,
persistence, reconnaissance and propagation. ArduWorm forks
into two processes at startup. One of them executes the RAT
and listens for commands, whereas the other performs the
persistence, reconnaissance and propagation stages.

1) Payload: The RAT payload of ArduWorm opens port
16333 and provides a shell to the attacker. These commands
are being executed with root privileges, so the attacker can
install third-party elements in the machine such as network
spoofers or sniffers.

Additionally, since the payload is being executed with root
privileges, it leaks the /etc/shadow file containing user names
and password hashes to an external, more powerful server. The
external server uses some password cracking program (such
as the popular John the Ripper [20]) in an attempt to get the
clear passwords from the hashes. Whenever those passwords
are cracked, the server sends them back to the RAT for further
usage during the propagation phase.

2) Persistence: During the persistence stage, ArduWorm
looks for information regarding the machine where it is being
executed. It detects the type of machine and devices connected
to it and its current level of privileges. If ArduWorm has not
enough privileges to persist, it will stop this phase and move
on to the next one.

If enough privileges are granted, ArduWorm copies itself
to the system library and creates a startup script in /etc/init.d.
In this way, the worm will be executed on each reboot. It will
also create a new user in the system for a remote attacker to
log in via SSH. This allows remote access even in the case
where the RAT backdoor (i.e., the port 16333) is filtered by
a perimeter firewall.

Fig. 5. WSN attack scenario

3) Reconnaissance: After persisting, ArduWorm gets all
active network interfaces and performs a network scan to lo-
cally reachable devices. ArduWorm will look for TCP ports 22
and 23, usually bound to SSH and Telnet services. ArduWorm
tries to connect to such ports, and if a response is received,
it stores the IP/port pair for its usage during the propagation
phase. ArduWorm also performs TCP/IP stack fingerprinting
[21] in order to infer the operating system running such
machines. Depending on the information gathered, ArduWorm
will attempt to propagate to such machines. Currently, the
worm capabilities are only targeted to other Linux-based
devices.

ArduWorm also checks for serial ports connected to the
device interfaces, such as bluetooth dongles. These serial
interfaces are different from the ones controlled by the
Atmega32u4 MCU, and can be used during the propagation
phase as explained in the next section.

4) Propagation: Once potential targets have been identi-
fied, ArduWorm starts the exploitation stage if the hashes
leaked during the RAT setup have been already cracked and
returned from the server. Given the huge amount of sensors
deployed in a typical IoT scenario, it can be assumed that
devices may share the same or similar passwords. Thus, by
knowing the password from the current machine, it may be
possible to gain access to neighbor devices by performing a
small dictionary attack (e.g. by appending a number to the
cracked password). If successful, ArduWorm will copy and
execute itself in the next device, repeating the whole process
again.

Additionally, ArduWorm includes a script to send the same
exploitation technique described in Section III. For such a
purpose, it would be trying to compromise serial interfaces
connected to the Atmega32u4 system on chip, which may
be directly connected to other devices based on the AVR
architecture, for example using a serial bluetooth. Indeed,
if the Arduino devices were connected forming a sensor
network, there is a chance of another sensor similar to the
one being controlled by Arduino to be connected in such serial
port, making a further exploitation stage possible.

B. Attack PoC

To show the threat exposed by ArduWorm, we propose two
proof-of-concept scenarios where it could be spread.



Fig. 6. Home network attack scenario

First, suppose that a Wireless Sensor Network (WSN) used
for meteorological forecast is deployed in the field to measure
different environmental-related data over time. Such sensors
are inter-connected between them and to the Internet in order
for their operator to be able to receive and configure the
sensors remotely. Each sensor is controlled by an Arduino
Yun, being the Atmega32u4 chip in charge of reading data
from the sensor itself, and the OpenWrt being responsible
of the controlling of such sensor parameters and information
forwarding through the network. Additionally, the sensors
have a serial bluetooth interface connected to the Atmega32u4
chip in order for operators to configure the sensor when
no network connectivity is available (e.g. to configure the
network during the initial deployment). Figure 5 depicts the
previously described scenario.

By using ArduWorm, an attacker may be able to compro-
mise the bluetooth serial interface connected to the Atmel chip
in one of the sensors. It can then run arbitrary commands in
the OpenWrt side of the Arduino Yun controller with root
privileges. This can be used to issue a command to download
the ArduWorm Python executable and run it on the machine.
Once ArduWorm is present in one device inside the network,
it will spread itself to other sensors as explained above.

In addition to the previously proposed scenario, consider a
second situation in which a user has installed an Arduino Yun
at home in order to control devices attached to it (see Figure
6). In this case, the Arduino Yun board is used in order to
act as a gateway between the network attached storage (NAS)
device and the audio music system, so it is possible for him
to act play songs stored in the former machine.

Again, if an attacker is able to gain access to a serial inter-
face in the Arduino Yun Atmega32u4, then she may be able to
compromise the Linux system of the board. By downloading
ArduWorm, she could use the RAT capabilities to control
the OpenWrt system, and to install tools which allows her
to control other devices in the network. This compromised
Arduino Yun can thus spoof all traffic in the network or
impersonate the home router, making all communications in
the home network of the user vulnerable to MITM attacks.

V. POSSIBLE COUNTERMEASURES

Since the IoT market is projected to grow notably in the
next few years, it is expected that exploits and malware
targeting IoT devices and networks grow as well. Thus, it is
essential to be prepared and provide further security checks to
the developed applications and firmwares. In this section we

provide an overview of countermeasures that could be devised
against the attack proposed in this work.

A. Protection against memory corruption vulnerabilities
Currently, micro-controllers based on AVR architecture

lack of mechanisms to protect against well known memory
corruption attacks, such as buffer overflows and control flow
hijacking. Unfortunately, AVR devices mainly consist of tiny
devices with limited processing power. Moreover, they rely
on a monolithic processor that can only run one process
at a time, and that do no accept runtime modifications.
This makes modern defenses such ASLR or Stack-canary
protection inappropriate.

In order to avoid code reuse attacks such as those presented
in this work, research community should focus on lightweight
mechanisms which modifies the memory layout of the flash
memory. For example, Habibi et al. [18] presented a method
that periodically randomized the memory layout of a AVR
MCU to avoid ROP attacks, by using external hardware
support.

B. Network protection
IoT devices are intended to be connected either locally (e.g.

LAN or Wifi networks) and globally to the Internet. Thus, it is
essential to provide these devices to proper network protection
mechanisms, such as encryption or packet authentication.
While this seems obvious, lack of encryption and authentica-
tion mechanisms are two of the top 10 vulnerabilities found
by OWASP for IoT [22]. It would be desirable a standardized
security protocol for the success of IoT. When every object
in our daily life is connected to the Internet, they must speak
the same (security) protocol to ensure interoperability. The
standardization efforts have to grow with the technology,
giving rise to a very important effort to make IoT a reality.

C. Overcoming the gap of diversity
The IoT paradigm requires the connection of a widespread

diversity of devices, having different architectures and hard-
ware equipment. For example, this difference is obvious in the
wearable devices connected to a smartphone using bluetooth.
A smartphone can afford almost any bluetooth authentication
scheme, but if the device which is being paired lacks of
display and/or keyboard, then the pairing must be done with
an unsecure ”just-works” mechanism [23] which is vulnerable
to Man-in-the-Middle (MITM) attacks.

In IoT scenarios it is possible for an adversary to com-
promise the weakest point to further spread to other devices.
Indeed, during our experimentation using the Arduino Yun
we have found a difference between the capabilities of the
Atmega32u4 (AVR) chip and the Atheros (Openwrt) one.
Accordingly, by exploiting a vulnerability in the Atmega32u4
we have been able to control the Openwrt, which in turn can
lead to a more severe attack. It is indispensable that extra
security measures are taken in the OpenWrt. For example,
by authenticating the commands sent through the bridge
connecting both chips, or by limiting the commands that can
be triggered from the Atmega32u4 chip (in its current state,
the commands are issued by the root user, which has full
privileges on the system). It would be desirable if the Arduino
community could provide a OpenWrt release containing such
countermeasures to be flashed on future Arduino Yun devices.



VI. CONCLUSIONS

The Internet of Things is an emerging scenario that is
widely used in critical ITC scenarios such as medical moni-
toring, automotive and smart homes. Thus, the consequences
of security breaches extend from classical loss of privacy,
confidentiality and integrity of digital assets, toward physical
harm to human beings. It is essential to equip IoT devices and
networks with proper security mechanisms to hinder malicious
activities.

In this work we have presented a functional malware spec-
imen (i.e. ArduWorm) which is able to compromise Arduino
Yun devices, which are common in the IoT arena due to its
low cost and ease of use. By exploiting a vulnerability in the
resource constrained AVR chip integrated in Arduino Yun,
we showed how an adversary can hijack the OpenWrt chip
that has full connectivity capabilities. This is possible due
to the flaws encountered in the design of the Bridge library
that communicates both chips and that do not provide access
control neither authentication. We have described a proof of
concept worm which installs a backdoor and provides the
adversary with a Remote Access Tool (RAT) to the device.

We hope that this work can help the Arduino commu-
nity to modify the Bridge library to hinder similar attacks.
Moreover, we consider that our work motivates research and
development of lightweight security mechanism that can be
implemented in resource constrained devices such as Atmel
AVR chips.
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