Ridiculous Radios

Dominic Spill (@dominicgs)

Thanks

Mike Walters
Ang Cui
Schuyler St. Leger
Matt Ettus
Jared Boone
Root Killah

Sergey Bratus Travis Goodspeed Taylor Streetman Jacob Graves Piotr Esden-Tempski Michael Ossmann

Who am I?

Dominic Spill

Security Researcher at Great Scott Gadgets

Investigating communication
protocols - IR, RF, wired networks

Firmware and software for HackRF, Ubertooth, GreatFET

fcc.io

EMF Camp

Ridiculous things in this presentation

Revolting Receivers:

Breadboard SDR

1-bit SDR

_ __ __

Terrible Transmitters:

Clock Signal FSK

Delay Line PSK

Disclaimer

Know (and obey) your local laws

Scenario

Cheap microcontrollers are everywhere, they have Analog to Digital Converters (ADC) and speak USB.

Can we build a radio receiver out of these microcontrollers?

Breadboard SDR

How it works

fft 🛎 HackRF spec 🛎 untitled 🛎 1bit-keyfob-rx 🛎 breadboard-nbfm-rx 🛎

Breadboard SDR - FM Receiver

FM Breadboard Receiver

	Fri 15:07		
inspe	ctrum: adc2.cu8		
			-

- 200 kHz		2.800000		2	inspec 900000	trum: adc2.cu8	3.00000		401.00.10	3.100000		3,200000	
- 100 kHz			2 115										
					ling a second and the								
на са се		and a second and a second a s a second a se a second a s a second a secon	Rawa marataka	Grupes provide y Antonia (* 1777) Antonia (* 1777)									
			Artesia Seria Arte Seria Artesia Seria Artesia Seria Artesia										
-200 kHz					1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			an a					
	3111				I II I								
									ന്നെട്			l	an an an th
												*~~~~	w
- III - II I													

When you build a radio in software, you don't need much hardware

Scenario

We need to transmit data from our microcontroller project, but but don't want to wait for RF modules to ship.

Can we program a microcontroller to transmit data over the air?

Clock Signal Transmitters

Toggling IO Pins

Miek's OOK transmitter

https://gfycat.com/gifs/detail/cloudyinfamouscapybara

Ang Cui's Funtenna

http://www.funtenna.org/CuiBH2015.pdf

Raspberry Pi FM

https://github.com/PNPtutorials/FM Transmitter RPi3

GreatFET One PLL Transmitter

How it works

Real World Radios

Our demonstration target used a frequency deviation of +/-25 kHz and a center frequency of 315.005 MHz.

We transmitted with a frequency deviation of +/-50 kHz at a center frequency of 315.050 MHz, and it worked!

If it oscillates like a radio and emits like a radio

lt's a radio

Scenario

Authoritarian governments restrict import/export of Analog to Digital Converters (ADC) in an effort to prevent distribution of technology.

Can we use a General-Purpose I/O (GPIO) pin on a microcontroller to implement a receiver without an ADC? Supplement No. 1 to Part 774

converters, electro-optical or "optical integrated circuits" designed for "signal processing", field programmable logic devices, custom integrated circuits for which either the function is unknown or the control status of the equipment in which the integrated circuit will be used in unknown, Fast Fourier Transform (FFT) processors, electrical erasable programmable read-only memories (EEPROMs), flash memories or static random-access memories (SRAMs), having any of the following:

a.2.a. Rated for operation at an ambient temperature above 398 K (+125°C);

a.2.b. Rated for operation at an ambient temperature below 218 K (-55°C); or

a.2.c. Rated for operation over the entire ambient temperature range from 218 K (-55°C) to 398 K (125°C); a.5.a.2. A resolution of 10 bit or more, but less than 12 bit, with an output rate greater than 500 million words per second;

a.5.a.3. A resolution of 12 bit or more, but less than 14 bit, with an output rate greater than 200 million words per second;

a.5.a.4. A resolution of 14 bit or more, but less than 16 bit, with an output rate greater than 250 million words per second; *or*

a.5.a.5. A resolution of 16 bit or more with an output rate greater than 65 million words per second;

Technical Notes:

1. A resolution of n bit corresponds to a quantization of 2^n levels.

GPIO Pin Receiver

Problems

The signal is at 43.75 MHz but we sample 25 MHz of bandwidth

We're going to need more than 1 bit of dynamic range to recover signals

Undersampling

_ _ _

The signal is at 43.75 MHz

We sample at 50 MHz (25 MHz bandwidth)

We'll see aliases, but we'll try to ignore them

Oversample and Decimate

Oversample and Decimate

Oversample and Decimate

Oversampling and Undersampling

At the same time!

1 bit Receiver Flowgraph

1 bit samples

Oversample and decimate

1 bit of dynamic range ought to be enough for anybody

Scenario

Big Brother (Mike Ossmann) has developed a pseudo-Doppler direction finder to track down illegal radio transmitters.

Can we steal a direction finder and use it as a direction finding countermeasure?

Direction finder to PSK transmitter

Pseudo-Doppler Direction Finding

Using an antenna switching board, we rapidly change antennas, introducing a doppler shift that reveals the direction of a transmitter.

Pseudo-Doppler Redux

Michael Ossmann and Schuyler St. Leger, Shmoocon 2018 <u>https://archive.org/details/Shmoocon2018/Shmoocon2018-Pseudo-dopplerRedux.mp4</u>

Opera Cake antenna switch

Phase shifting

Switching between spatially distinct antennas introduces a phase shift

The same effect occurs if two lengths of cable are used

Cheap 2.4 GHz Source

Adding phase shifts circumvents pseudo-Doppler

Scenario

Since we can affect the phase, can we use a direction finder to implement a Phase Shift-Keying (PSK) transmitter?

Covert Channels

A Protocol for Leibowitz

Travis Goodspeed and Sergey Bratus, REcon 2015 <u>http://www.cs.dartmouth.edu/~sergey/phy/leibowitz-recon2015.pdf</u>

Fillory of PHY: Toward a Periodic Table of Signal Corruption Exploits and Polyglots in Digital Radio

Sergey Bratus, Travis Goodspeed, Ange Albertini, Debanjum S. Solanky, WOOT 2016

http://www.cs.dartmouth.edu/~sergey/phy/leibowitz-recon2015.pdf

Opera Cake with delay lines for adding phase shifts

How it works

2.4 GHz PSK

Paths can be switched at >11 MHz DSSS is just fast PSK

AT&T LTE VPN 10:36 AM	7 🕴 94% 🔳
Settings Wi-Fi	
DIRECT-50-HP OfficeJet Pro	₽ 奈 (i)
GAMMA	₽ 奈 (ì)
gibson	🔒 🗢 🚺
Is this revolting or what?	l @ 💽
NETGEAR53	🛾 🗢 🚺
NETGEAR53-5G	∎ 奈 (i)
Not_a_big_truck	∎ 奈 (i)
OTL1183	🛾 🗟 (j)
OTL1383	🛾 🗢 🚺
OTL1386	∎ ? (j)
OTL1480	∎ ? (j)
Other	
Ask to Join Networks	\bigcirc
Known networks will be joined automatically	/ If no known

An external modulator can add a covert channel

Thanks

Mike Walters		
Ang Cui		
Schuyler St. Leger		
Matt Ettus		
Jared Boone		
Root Killah		

Sergey Bratus Travis Goodspeed Taylor Streetman Jacob Graves Piotr Esden-Tempski Michael Ossmann

References

https://github.com/greatscottgadgets/greatfet
https://github.com/mossmann/hackrf

Find us on Twitter: @dominicgs / @michaelossmann