
As an Android developer, I don’t want to downgrade Samsung. I just want to find out what

caused the accident and what we can learn from it. I think that it’s necessary for the Android

system to go wrong. From a technical point of view, why is there such a problem?

Conclusion first, for melon-eating people who don’t like to read long texts, just

look at the conclusion:

"The performance of this accident was that some of the Samsung system's mobile phone

system's key system service process repeated Crash and forced to enter the Recovery interface.

The key system service refers to Samsung's SystemUI process. When the SystemUI process

initialized the AOD plug-in, AOD plug-in initialization error caused Crash Because it is a system

service, after Crash reaches a certain number of times, it will be forced to enter the Recovery

interface, so most users see the Recovery interface (pictured below)

``The full name of AOD is Always On Display, the Chinese translation is the screen display, which

is the service that displays the time, weather, patterns, etc. on the screen after you press the

power key to lock the screen.This function is only available on some high-end models.''

``The reason for the AOD plug-in Crash is that May 23, 2020 is leap April. When AOD displays the

lunar calendar, it needs to display leap April, so it will go to the branch condition that shows the

leap April, which is generally difficult to enter. After entering this condition, you need to obtain

the common_data_leap_month string field (the corresponding value of this string field is "leap"),

but due to a bug in the code compilation, the code cannot find this field in the compiled apk, so

the process directly reports After FATAL EXCEPETION, the process restarts. After restarting, the

initialization still needs to obtain this field, and then restart, so repeatedly, and finally trigger the

system's self-help measures, enter the Recovery interface.

"This is why this problem only occurs for Chinese users, because AOD needs to display "Leap"

April on May 23, but did not find the word "Leap", so it hanged. So it is not the millennium bug,

also It’s not that the server was hacked, and it’s not Samsung’s intentionally disgusting

people. This kind of bug caused by compilation, and then encountered a leap month that

happened once in a few years, it didn’t come out. I will recognize it when I encounter it. I

honestly apologize, not shameful.”

analysis

The people who eat melons can come back. Interested Android developers can continue to look down.

Although the content is simple, I personally think that I can still take a look.

For Samsung developers, analyzing this Crash is very simple, just log in the monitor. From the later

analysis, this problem is quickly found and repaired (it lasted about half a year); But for other

developers interested in this issue, you need to use other tools

However, the analysis process is also very simple. Here, I will record my analysis ideas and tools used

for everyone's convenience.

Start with phenomena

The above conclusion says that frequent Crash of the Persist process will cause the system to trigger

self-help and enter the Recovery interface, so many user feedback screenshots you see are the

Recovery interface, as follows

However, there are user interfaces that directly display the error message (I guess it is a function added

by Samsung itself, let me know if you have any trouble), this interface is very important for us to

analyze the code

Developers are most familiar with this stack. This is a one-frame rendering process. During the

initialization of AOD's LocalDateView, an error occurs when calling the getLunarCalendarInChina

method. LunarCalendar means lunar. string value.

Then the problem is very clear, we only need to check the following points

1. common_data_leap_month The code logic that appears in the string field

2. common_data_leap_month this string field was not found to cause the operation error

Analysis code

First look at the code logic that appears in the common_data_leap_month field. Since the function

stack is listed above, then we need to directly view the code to analyze the logic generated by this

problem. How do I get the code? Naturally need to decompile, the recommended decompilation tool:

TTDeDroid

Decompilation requires Samsung AOD code, you can search for Always-On-Display in ApkMirror, you

can find the corresponding file, you can see that Samsung's AOD update frequency is still very

frequent, through user feedback can know that not all users There is this problem, and there is no

problem to update to the new version, then we speculate that the problem lies in the old version (from

the stack to guess that it should be V�.� version)

Normal version_V�.�.��

The latest version is normal, without Crash

First let's take a look at the logic of the latest version of this code

String month = shouldShowLeapMonth(locale) ? context.getResources().getString(R.string.

https://link.zhihu.com/?target=https%3A//github.com/tp7309/TTDeDroid

This means that if you need to display the leap month, then take the value of

common_date_leap_month, and search for common_date_leap_month globally and find that this

value is defined in the latest version.

Here you can see the code logic of the common_data_leap_month field: ``Only when the leap month

needs to be displayed, the value of the common_date_leap_month field will be obtained, and the

acquisition of this value will not be triggered 99.9% of the time'' .

The common_date_leap_month exists in the R.java file, indicating that it exists, check the

corresponding string.xml also has the definition of this field

The problematic version_V�.�.��

Since there is no problem with the new version, and we also know the code logic of the

common_date_leap_month field, then we look at the reason why the common_date_leap_month field

is not found from the old version.

The old version found here is problematic. Users who use this version (these versions) will have

frequent crashes on the ��rd. The reason why I think he is problematic is because the global search for

the common_date_leap_month field found that There is no corresponding field in the R file, and there

is no corresponding field and its corresponding value in the corresponding string.xml, that is, the code

here is only used, and there is no definition or assignment (how did it be compiled??)

The corresponding code logic above is as follows, you can see that the function name and the number

of lines are consistent with the error report, InChina...

The corresponding code:

private String getLunarCalendarInChina(Context context) {

 if (sSolarLunarConverter == null) {

 sSolarLunarConverter = SECCalendarFeatures.getInstance().getSolarLunarConverter

 if (sSolarLunarConverter == null) {

 return "";

 }

 }

 Time time = new Time();

 time.set(Calendar.getInstance().getTimeInMillis());

 sSolarLunarConverter.convertSolarToLunar(time.getYear(), time.getMonth(), time.getM

When the problem occurred

According to my investigation here, I found that this problem actually occurred when the AOD

application was upgraded from v�.�.�� to v�.�.��, but there has been no problem in the middle.

Without leap April, users will not have problems. , The test was not measured, and it was not fixed until

v�.�.�� released on June 24, 2019

As of v�.�.�� we can see that the common_date_leap_month field still exists

After upgrading to v�.�.�� (the first version with problems), this field is gone (how did you compile it??)

"Take care" :

 String[] months = context.getResources().getStringArray(R.array.common_LunarMonth);

 String[] days = context.getResources().getStringArray(R.array.common_LunarDay);

 int convertMonth = sSolarLunarConverter.getMonth();

 int convertDay = sSolarLunarConverter.getDay() - 1;

 ACLog.d(TAG, "Lunar month and day : " + convertMonth + ", " + convertDay);

 if (convertMonth < 0 || convertMonth >= months.length || convertDay < 0 || convertD

 ACLog.e(TAG, "getLunarCalendarInChina, array out of bound month = " + months.le

 return "";

 }

 String chinaLunar = (sSolarLunarConverter.isLeapMonth() ? context.getResources().ge

 String str = chinaLunar;

 return chinaLunar;

}

1. AOD upgrade from v�.�.�� to v�.�.�� introduced this problem (introduced on October 24, 2018)

2. AOD upgrade from v�.�.�� to v�.�.�� solves this problem (fixed on June 24, 2019)

During this period, all models with AOD versions from v�.�.�� to v�.�.�� that have never been upgraded

will enter Recovery mode on the day of May 23, 2020.

Compilation problem

A very important point above is the compilation problem. Android developers know that if I write

getString(R.string.common_date_leap_month) in the code, then I have to define this

common_date_leap_month in strings.xml, and then give him a value, such as " "Leap", so that we can

see this field in the R file, we can use the syntax like getString(R.string.common_date_leap_month) to

call; otherwise there will be a problem during the compilation phase, the compilation prompt

R.string.common_date_leap_month does not exist

However, through the above analysis, we found that the frequent Crash version is Crash because it

can't find the common_date_leap_month field. Since it can't be found, it should be compiled, but

since we got the apk, it means that the compilation is no problem. .

If this situation occurs, there are generally the following two situations

1. There are different versions of the same jar package in the project, so different jar packages are used

during compilation and runtime

2. The compilation uses Maven, because the dependencies in the project use different versions of the

package, the last package is not the version you need

Guess Samsung's problem this time is because of the second situation, the main project and sub-

modules use different versions of the package, which can be compiled through, but the final package

into the project is not the package at compile time, and the FATAL at runtime appears EXCEPTION:

NoSuchFieldError (If you have specific reasons, you can leave a message to discuss a wave)

to sum up

Although the above analysis process is relatively simple, but there are some more tedious work, such

as finding versions, decompilation, looking at the code logic, etc. In the end, it can be regarded as the

root cause of the problem: the problem caused by the compilation only encountered once in a few

years Leap month. So what have we learned from this?

1. Function test: Leap month is a function in the calendar, not a commonly used function, but relatively

professional, such as this involves professional, you must be cautious, list all possible situations to

test, necessary situations Next, leave it to a professional to evaluate test cases

2. For projects that rely on multiple parties to compile, make sure that the referenced version is

consistent with the local version when compiling. For modules that rely on multiple parties, it is best

to confirm with the corresponding dependent module before issuing the version each time.

3. SystemUI (lock screen\status bar\gestures\multitasking\AOD, etc.) modules and desktop modules

are modules that users can directly feel. These modules have very high requirements for stability,

because once these modules occur FATAL, the The impact is very huge, just like Samsung this time,

so the developers of these modules are also the hardest, not only to undertake the implementation

of some highlight functions, but also to ensure stability, but also in the middle of system

development and application development, There is a great coupling on both sides, which is really

not easy (the wife has been making this for more than 6 years, adding a drumstick at night...)

4. The system update provided by the manufacturer and the application update (especially the system

application) of the manufacturer must be updated in time. Every time the system and system

application update generally fix many bugs, enhance stability and performance. There is no

profitable pressure on the system and system application. , So the update is mainly to improve the

quality, you can safely update.

5. Developers should be curious and awe-inspiring about this kind of things: curiosity can help me

learn a lot, and see the essence through phenomena; awe-inspiring can let me know the lack of my

knowledge. In the huge Android system, I know nothing but the sea. .

6. This problem is definitely a big accident for Samsung, but it also contributed a classic case. It is

estimated that other App or mobile phone manufacturers will include this in the functional test. As

for Samsung, the domestic market itself will not work, S�� series I just got warmed up again, and this

thing happened again, still the sentence: This is life, confession, apology, not shameful."

Edited on 2020-05-28

https://www.zhihu.com/question/396666758/answer/1245994988

