
Hacking Closed-Source

The Power of Reverse Engineering
Real-World Products

Jiska Classen
Secure Mobile Networking Lab - SEEMOO
TU Darmstadt, Germany

Me age 14:
Open-source software
evangelist.

Me now:
Open the source software
evangelist.

Programming a DCF77 receiver in Assembly.

C is hard and has so many different instructions.

School

Nothing I learned at the Linux User Group is
relevant for my studies.

What am I even studying?

Is anything of this relevant to security?

That M.Sc. IT Security sounds interesting…

I still know nothing, maybe I should stay for a PhD?

Studying

“We have that fitness tracker firmware and nobody has the time to look into it.”

staring intensifies

Years of learning random things
suddenly make sense.

#pragma NEXMON targetregion "patch"

#include <firmware_version.h>
#include <patcher.h>
#include <wrapper.h>
#include "stm32.h"

int hook_get_steps() {
 int steps = *((int *) 0x20003B54);
 steps = steps * 100;
 return steps;
}

__attribute__((at(0x8014304, "", CHIP_VER_FITBIT, FW_VER_FITBIT)))
BPatch(hook_get_steps, hook_get_steps);

Everything is
open-source now.

◀◀ REW

Forward Engineering 🦥

Reverse Engineering 🤓

Why reverse engineer something?

● Most software ships as binary
without source code.

● Even if you have source code,
libraries and system components
used by a program might be
binary-only.

● When analyzing real-world software,
reverse engineering is indispensable.

Static Reverse Engineering 🐉Binary

Disassembled

Decompiled

Dynamic Analysis (e.g. gdb)

Rebased after loading

puts argument
is located in rdi

🐢 Static vs. Dynamic 🐇

● Static 🐢
○ Everything is in the binary!
○ Extensive staring will bring back (almost) the original source code.

● Dynamic 🐇
○ Execute the binary and wait what happens.
○ Very fast if you know what you’re looking for.
○ Might miss details and certain conditions that first have to be found statically.

You’ll need different tools for both analysis methods.

Hooking

The heavy lifting of
reverse engineering.

Hooking

int handle_transfer(struct account* beneficiary, int credit) {

 // nothing was transferred, keep the money
 if !account_exists(beneficiary)
 return 0;

 // transfer and confirm money
 beneficiary->value += credit;
 return credit;

}

Print beneficiary->name
and credit

Change beneficiary
or credit

Return 0 to pretend we
didn’t get the money 🤑

Hooking Methods

Static 🐢
Patch the binary, then run it.

Dynamic 🐇
Run the binary, then patch it.

Keep most of the program intact, only hook very specific parts.

Firmware
Reversing

“What you’re doing is really challenging.”

🏁 Play CTFs if you would like to know a
 difficulty level or get a solution later on.

You wouldn’t simply attach gdb
… or would you?

Running gdb on the Fitbit
requires patched firmware.

🥚🐔

Your disassembler might get 25% of
function starts wrong on raw Arm

firmware.

Code? Data?

Reversing Open-Source

● What you’re reversing might be open-source.

● Look for specific libraries, e.g., encryption,
real-time operating systems, …

● Get different firmware versions for your
target!

00081560 32 32 32 00 4c e4 05 00 3e 24 00 00 01 08 6e 04 |222.L...>$....n.|
00081570 02 00 00 00 34 4e 56 60 78 e4 05 00 02 20 00 00 |....4NV`x.... ..|
00081580 1b 00 20 00 28 00 0f 0f 0f 00 00 00 6c e5 05 00 |.. .(.......l...|
00081590 00 00 00 00 43 6f 70 79 72 69 67 68 74 20 28 63 |....Copyright (c|
000815a0 29 20 31 39 39 36 2d 32 30 30 33 20 45 78 70 72 |) 1996-2003 Expr|
000815b0 65 73 73 20 4c 6f 67 69 63 20 49 6e 63 2e 20 2a |ess Logic Inc. *|
000815c0 20 54 68 72 65 61 64 58 20 41 54 4d 45 4c 2f 47 | ThreadX ATMEL/G|
000815d0 72 65 65 6e 20 48 69 6c 6c 73 20 56 65 72 73 69 |reen Hills Versi|
000815e0 6f 6e 20 47 34 2e 30 62 2e 34 2e 30 63 20 2a 00 |on G4.0b.4.0c *.|
000815f0 47 2d 47 42 2d 47 4c 2d 4d 2d 44 2d 44 4c 2d 4b |G-GB-GL-M-D-DL-K|
00081600 4d 4c 2d 43 4d 52 2d 48 4d 52 2d 4d 4c 32 2d 47 |ML-CMR-HMR-ML2-G|
00081610 5a 2d 4b 48 32 2d 43 4d 2d 52 50 2d 54 43 2d 4e |Z-KH2-CM-RP-TC-N|
00081620 48 2d 54 44 2d 41 50 2d 48 41 2d 47 46 2d 44 44 |H-TD-AP-HA-GF-DD|
00081630 2d 41 54 2d 4d 46 2d 4d 53 2d 44 57 2d 55 53 41 |-AT-MF-MS-DW-USA|
00081640 2d 43 41 2d 53 44 2d 53 44 53 55 00 05 00 00 00 |-CA-SD-SDSU.....|
00081650 08 00 0f 00 1a 00 00 00 28 46 6c 6f 61 74 69 6e |........(Floatin|
00081660 67 20 70 6f 69 6e 74 20 6f 75 74 70 75 74 20 75 |g point output u|
00081670 6e 73 75 70 70 6f 72 74 65 64 20 77 2f 2d 6e 6f |nsupported w/-no|

There’s ThreadX documentation and
newer versions are open-source!

From the Bluetooth firmware that Dennis and me were staring on for multiple months, older BCM20702 version.

002069d0 00 00 00 00 55 45 55 51 00 00 00 00 02 00 00 00 |....UEUQ........|
002069e0 01 00 00 00 00 00 00 00 01 00 00 00 10 0d 20 00 |.............. .|
002069f0 18 0d 20 00 10 0d 20 00 10 0d 20 00 00 00 00 00 |..|
00206a00 00 00 00 00 0c 6a 20 00 6c 69 20 00 55 45 55 51 |.....j .li .UEUQ|
00206a10 00 00 00 00 02 00 00 00 01 00 00 00 00 00 00 00 |................|
00206a20 01 00 00 00 18 0d 20 00 20 0d 20 00 18 0d 20 00 |......|
00206a30 18 0d 20 00 00 00 00 00 00 00 00 00 44 6a 20 00 |..Dj .|
00206a40 d4 69 20 00 55 45 55 51 00 00 00 00 02 00 00 00 |.i .UEUQ........|
00206a50 20 00 00 00 00 00 00 00 20 00 00 00 7c 6a 20 00 ||j .|
00206a60 7c 6b 20 00 7c 6a 20 00 7c 6a 20 00 00 00 00 00 ||k .|j .|j|
00206a70 00 00 00 00 90 33 20 00 0c 6a 20 00 00 00 00 00 |.....3 ..j|
00206a80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*
00206b70 00 00 00 00 00 00 00 00 00 00 00 00 4e 44 56 44 |............NDVD|
00206b80 00 00 00 00 00 00 00 00 00 00 00 00 c8 6b 20 00 |.............k .|
00206b90 01 00 00 00 ac 9c 20 00 44 35 20 00 00 00 00 00 |...... .D5|
00206ba0 4c 36 20 00 7f a7 00 00 00 00 00 00 00 00 00 00 |L6|
00206bb0 00 00 00 00 45 a7 00 00 00 00 00 00 00 00 00 00 |....E...........|
00206bc0 00 00 00 00 00 00 00 00 44 52 48 54 6b 02 00 00 |........DRHTk...|
00206bd0 80 6d 20 00 6c 6c 20 00 47 6e 20 00 dc 01 00 00 |.m .ll .Gn|

/* Define queue control specific data definitions. */

#define TX_QUEUE_ID ((ULONG) 0x51554555)

https://github.com/azure-rtos/threadx/blob/master/common/inc/tx_queue.h

https://github.com/azure-rtos/threadx/blob/master/common/inc/tx_queue.h

Even if you don’t find source code for an RTOS,
reversing semantics of threads, queues, etc.

will be a great starting point!

Encryption

● Cryptographic algorithms use magic numbers.
● XTEA encryption delta value: 0x9E3779B9
● …how many encryption libraries supporting 32bit Arm are there?

Statically-Linked Libraries

● If code from multiple libraries/modules is
included in the same binary, the compiler tends
to keep them in the same location.

● Some libraries/algorithms/specifications are
open-source, search for weird numbers online.

● Check if nearby functions and xrefs belong to
the same library. Note that cross-references are
not always found by the disassembler!

fun_0000ac
fun_0001de
fun_000201
fun_000237
fun_00029a

fun_000201
fun_0002de
fun_000301
fun_000333
fun_00038a

fun_000403
fun_0005da
fun_000601
fun_000623
fun_0006fa

Module A

Module B

Module C

xtea_dec
Encryption
Library

Firmware
Update
Module

xref

update_dec

Bluetooth
Services Listgatt_s23

Symbols

● Raw firmware flash dumps don’t contain
symbols.

● SDKs might still contain symbols to link
components into the firmware!

Reviewer 2:
“Does it work on the latest firmware?”

Reverse Engineering without Symbols

get_ptr_to_connection_struct()

eventually_send_lmp_buffer()

vendor_specific_hci_wtf()

Reverse Engineering with Symbols

blueRF_Rd(addr)

bthci_cmd_vs_HandleSuper_Duper_Peek_Poke()

DHM_LMPTx(conn, buff)

LM_LmpInfoTableBPCS

diag_logLcpPkt()

lm_handleEvents()

main()

thread_Create(ptr, name, prio,
func, 0, 0, stack_size)

Real-World
Targets

Specify a Goal

● Can we send custom data or
waveforms with this Wi-Fi chip?

● Could this protocol be more
performant when we change the
scheduling?

● How does Apple’s Bluetooth stack
behave when we pick a high Ratchet
during the MagicPairing algorithm?

Anything that keeps you motivated!

● What you’re looking for might not exist.

● Real-world targets are overwhelmingly large.

● Most bugs are relatively simple (compared to advanced CTFs).

● Certain attack vectors might’ve been extensively tested by someone else before.

🐞
🐛

�� ��🐜

��

🪰

��

Where to
start?Meanwhile,

another
researcher

Wrong
decisions…

Getting Started

Great Resources

● begin.re
Get started with Windows/x86 reverse engineering and hack Minesweeper.

● ragingrock.com/AndroidAppRE
Learn how to reverse engineer Android apps (Java/x64) to uncover malware
functionality.

https://www.begin.re
https://ragingrock.com/AndroidAppRE

Don’t give up staring!

Q&A
youtube.com/@jiskac

@jiska@chaos.social

github.com/seemoo-lab

jclassen@seemoo.de

🐘

