[Maurycyz] points out right up front: several of the reagents used are very corrosive and can produce toxic gasses. We weren’t sure if they were trying to dissuade us not to replicate it or encourage us to do so. The project in question is making strontium aluminate which, by the way, glows in the dark.
The material grows strongly for hours and, despite the dangers of making it, it doesn’t require anything very exotic. As [Maurycyz] points out, oxygen and aluminum are everywhere. Strontium sounds uncommon, but apparently, it is used in ceramics.
For the chemists among us, there’s an explanation of how to make it by decomposing soluble nitrate salts. For the rest of us, the steps are to make aluminum hydroxide using potassium alum, a food preservative, and sodium hydroxide. Then, it is mixed with nitric acid, strontium carbonate, europium, and dysprosium. Those last elements determine the color of the glow.
A drying step removes the acid, followed by dissolving with urea and water. The heat of the reaction wasn’t enough to form the final product, but it took time with an oxy-propane torch to form blobs of strontium aluminate. The product may not have been pure, because it didn’t glow for hours like commercial preparations. But it did manage to glow for a few minutes after light exposure.
We try to limit our chemistry to less toxic substances, although ferric chloride can make a mess. You could probably track down the impurities with a gas chromatograph. What we really want is a glow-in-the-dark car antenna.
Strontium is also used in fireworks, I think it makes a strong red colour?
There’s not much apart from the acid that’s hard to come by (and who knows, it might be a lot easier to get Nitric in your country than mine)
I wonder if making it with strontium-90 would produce a longer glow.