The SDWire board plugged into some SoM's breakout board's MicroSD socket

Automated MicroSD Card Swapping Helps In Embedded Shenanigans

[Saulius Lukse] has been working on some single board computer, seemingly, running Linux. Naturally, that boots from a microSD card – and as development goes on, that card has to be reimaged all the time. Sick of constantly plugging and unplugging the microSD card between the SBC and an SD card reader, [Saulius] started looking for a more automated solution – and it wasn’t long before he found out about the SDWire project, a hardware tool that lets you swap a card between a DUT (Device Under Test) and your personal computer with no moving parts involved.

SDWire is an offshoot from the Tizen project, evidently, designed to be of help in device development, be it single-board computers or smartphones. The idea is simple – you plug your MicroSD card into the SDWire board, plug the SDWire into a MicroSD slot of your embedded device, and then connect a USB cable from the SDWire to your development computer. This way, if you need to reflash the firmware on the SBC you’re tinkering with, you only need to issue a command to the SDWire board over the USB cable, and the MicroSD card appears as a storage drive on your computer. SDWire is a fully open source project, both in hardware and in software, and you can also buy preassembled boards online.

Such shortening of development time helps in things like automated testing, but it also speeds your development up quite a bit, saving you time between iterations, freeing you from all the tiny SD card fiddling, and letting you have more fun as you hack. There’s a clear need for a project like SDWire, as we’ve already seen a hacker assemble such a device using breakouts.

Load Your Icebreakers, The 2022 Cyberdeck Contest Starts Now

TL;DR: Enter the 2022 Cyberdeck Contest, starting right now!

When William Gibson first described the “cyberspace deck” used by the protagonists in Burning Chrome and Neuromancer, he offered only a few concrete details: they allow the user to explore cyberspace, are generally portable, and more adept owners often modify them to fit their particular needs. Anything else was left to the individual’s imagination, due in no small part to the fact that he author himself didn’t exactly know what the things would look like at the time. Still, not bad for a guy who was hammering it all out on a typewriter at the time.

Build your deck like Gibson is watching, because he is.

Now 40 years later, fact has caught up with fiction. The hacker and maker community have embraced the cyberdeck idea in a big way, and we’ve been blown away by the incredible creativity that goes into these bespoke computing devices.

Which is why we’re happy to announce the first, but very likely not the last, 2022 Cyberdeck Contest. Impress the judges with your Sprawl-ready rig, and you could claim one of three $150 USD Digi-Key shopping sprees to help fund your next cyberpunk masterpiece. You’ve got until Sept. 30, 2022.

So what is a cyberdeck, exactly? That’s a surprisingly difficult question to answer, but since we’re running a contest here, we’ll have to give it a shot…

It needs to be a computer of some sort, certainly. It should also serve a practical purpose; as impressive as your cosplay prop might be, we’re really looking for functional devices here. Nominally that means it will have a keyboard and some kind of display, but  figuring out how it all connects and what form the components will take is where things get interesting.

Above all, it needs to be personal. What would your dream computer look like? What features would it have? There’s no right or wrong answer here — a good cyberdeck should be a reflection of the person who built it, and no two should ever be quite the same.

Need some inspiration? Not to worry, you’ve come to the right place. We’ve seen dozens of these custom machines over the last couple of years if you need some help to get moving in the right direction.

Continue reading “Load Your Icebreakers, The 2022 Cyberdeck Contest Starts Now”

Cyberdeck Brainstorming Hack Chat

Join us on Wednesday, August 10 at noon Pacific for the Cyberdeck Brainstorming Hack Chat!

If there’s one thing for sure about Hackaday, it’s that we keep a finger on the pulse of the hardware hacking community. Trends come and go, but they rarely slip by us, thanks to the constant supply of tips to hot projects that our loyal readers send in. It’s great to get a first look at these projects and see what kind of trends they represent, and to see how the community reacts to them. Some trends fade quickly, some catch on for a bit, and some really catch fire.

One trend that’s gotten pretty hot lately is the cyberdeck. Finding ways to squeeze a computer into a compact, field-ready package and make it useable is a challenge right off the bat. Adding the suite of sensors and peripherals that have become de rigueur for cyberdecks adds another level of complexity, and taking the build across the finish line with the proper cyberdeck aesthetic makes these gadgets super-fun to build and (hopefully) to use.

If cyberdecks sound like fun, you’re right! And to help us all get onboard the cyberdeck train, we’re going to mix things up with this Hack Chat. Rather than putting one person in the hot seat for our usual AMA-style discussion, we thought it would be fun to get everyone into a chat and brainstorm some cyberdeck designs. And to help seed the discussion, we’ve invited a bunch of hackers whose cyberdeck builds we’ve featured before:

join-hack-chatWe’re not sure everyone will be able to make it, but we are sure that the more cyberdeck-adjacent people we have in the chat, the better. Whether you’re a veteran builder or just starting your first build, you’re going to want to stop by this Hack Chat and get in on the discussion. Particularly because we’re just kicking off our new Cyberdeck Design Contest in about an hour (spoiler!), and this’ll be a great way to get going!

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, August 10 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Hackaday Prize 2022: A Plasma Tweeter For Ultimate Clarity

In the world of audio there are a huge variety of esoteric technologies which are rarely seen. One such is the plasma tweeter, a type of loudspeaker which generates sound by modulating a small electrical discharge. The benefit of this design comes in its delivering the closest possible to a point audio source, in effect the theoretical ideal speaker for treble frequencies. They’re a little hazardous due to the voltage but aren’t too difficult to make, as demonstrated by [Mircemk] whose version uses a recycled power pentode tube — which is how it showed up in the Hack it Back round of the Hackaday Prize.

It can be thought of as a cousin of the Tesla coil, with the same resonant oscillator but no capacity hat. Instead the top of the coil ends in a point, from which in the perfect speaker a ball of plasma replaces the Tesla’s impressive sparks. In this case the pentode is joined by a high-voltage TV line output transistor as a bias supply, which is in turn modulated with the audio through a small amplifier. It sometimes needs the plasma teasing out of it through discharge to a screwdriver, but the result is a very effective and clear plasma tweeter.

If plasma tweeters interest you, we’ve featured them before.

Martian Successes Reshape Sample Return Plans

For as long as humans have been sending probes to Mars, there’s been a desire to return rock, soil, and atmosphere samples back to Earth for more detailed analysis. But the physics of such a mission are particularly demanding — a vehicle that could land on the Martian surface, collect samples, and then launch itself back into orbit for the return to Earth would be massive and prohibitively expensive with our current technology.

Mars sample return tube

Instead, NASA and their international partners have been working to distribute the cost and complexity of the mission among several different vehicles. In fact, the first phase of the program is well underway.

The Perseverance rover has been collecting samples and storing them in 15 cm (6 inch) titanium tubes since it landed on the Red Planet in February of 2021. Considerable progress has also been made on the Mars Ascent Vehicle (MAV) which will carry the samples from the surface and into orbit around the planet, where they will eventually be picked up by yet another vehicle which will ultimately return them to Earth.

But there’s still some large gaps in the overall plan. Chief among them is how the samples are to be transferred into the MAV. Previously, the European Space Agency (ESA) was to contribute a small “fetch rover” which would collect the sample tubes dropped by Perseverance and bring them to the MAV launch site.

But in a recent press release, NASA has announced that those plans have changed significantly, thanks at least in part to the incredible success of the agency’s current Mars missions.

Continue reading “Martian Successes Reshape Sample Return Plans”

PC Hardware Monitor Uses Tricorder-Derived Tech

The visually striking hardware monitor that [Mangy_Dog] recently put together for his new custom PC build might look like something out of the Alien franchise, but the hardware he’s built it around actually comes from a very different science-fiction property: Star Trek. Or at least, from a very impressive line of Star Trek props, anyway.

Given the incredible amount of time and effort that [Mangy_Dog] has put into developing his Star Trek: Voyager tricorder, it’s no surprise that he would decide to reuse its graphics chip and microcontroller. But while the familiar hardware might have helped jump-start this build, this was no weekend project.

He’s steadily been working on it for several months now, and even entered it into the 2022 Sci-Fi Contest back in April. Obviously he wasn’t able to complete it before the Contest deadline, but looking at the final results, we’re happy to see he kept chugging away at it.

Of course, with a project like this, the hardware is only half the battle. In the video below, [Mangy_Dog] explains the challenges involved in creating not only the firmware that runs on the monitor, but the accompanying PC-side application. This included modifying existing libraries to add support for the device’s unique flash storage arrangement, and pulling the relevant system status information out of the operating system and into a series of customizable widgets.

As impressive as the project is, [Mangy_Dog] says he’s not done yet. A second revision of the hardware and software will address several issues and add new capabilities, and considering the high degree of polish we’ve come to expect from his creations, we’re not surprised

Continue reading “PC Hardware Monitor Uses Tricorder-Derived Tech”

Was There A Programmable PONG Chip?

Students of game console history will reach back into the 1970s for the primordial machines, tracing from the Magnavox Odyssey onwards, and thence via the Fairchild Channel F into the world of microprocessors and the chain of machines that lead us to those we enjoy today. In the early days there was a parallel evolution for a few years of dedicated video game consoles with no interchangeable cartridges or microprocessors, these took their inspiration from the legendary PONG arcade game and used dedicated non-programmable hardware in custom chips to create their video. But was there a programmable PONG chip lurking among all the others? [Old VCR] takes a look.

Many readers will be familiar with MOS Technology as the originator of the 6502 processor used in so many 8-bit home computers. But perhaps many of our attention spans will have passed over another of their products, the MOS 7600 and 7601. These were the chip company’s entry into the surprisingly congested mid-70s PONG-in-a-chip market, and the article investigates the question of whether they might in fact be mask-programmed microcontrollers masquerading as dedicated chips.

It’s a fascinating tour through the mid-70s in terms of games consoles, MOS, and through their eventual takeover, Commodore. The possibility of a mask-programmed PONG chip is explored in detail and discounted, though like [Old VCR], we’d love to see one decapped and reverse engineered. For us a stronger line of evidence comes in asking why MOS would stop at PONG if they had a mask-programmed microcontroller in their catalogue, and that our not having seen MOS microcontrollers appearing all over Commodore’s subsequent products suggests that it may be simply another dedicated PONG chip like all the others.

We’ve seen quite a few variants of this iconic game over the years, but few as impressive as one made from discrete components.