Hackaday Podcast Episode 357: BreezyBox, Antique Tech, And Defusing Killer Robots

In the latest episode of the Hackaday Podcast, editors Elliot Williams and Tom Nardi start things off by discussing the game of lunar hide-and-seek that has researchers searching for the lost Luna 9 probe, and drop a few hints about the upcoming Hackaday Europe conference. From there they’ll marvel over a miniature operating system for the ESP32, examine the re-use of iPad displays, and find out about homebrew software development for an obscure Nintendo handheld. You’ll also hear about a gorgeous RGB 14-segment display, a robot that plays chess, and a custom 3D printed turntable for all your rotational needs. The episode wraps up with a sobering look at the dangers of industrial robotics, and some fascinating experiments to determine if a decade-old roll of PLA filament is worth keeping or not.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download this episode in DRM-free MP3 on your ESP32 with BreezyBox for maximum enjoyment.

Continue reading “Hackaday Podcast Episode 357: BreezyBox, Antique Tech, And Defusing Killer Robots”

MyMiniFactory Has Acquired Thingiverse Bringing Anti-AI Focus

One of the best parts of 3D printing is that you can freely download the plans for countless model from sites like Thingiverse, Printables, and others. Yet with the veritable flood of models on these sites you also want to have some level of quality. Here recent news pertaining to Thingiverse is probably rather joyful, as with the acquisition of Thingiverse by MyMiniFactory, it should remain one of the most friendly sites for sharing 3D printing models.

Although Thingiverse as a concept probably doesn’t need much introduction, it’s important here to acknowledge the tumultuous times that it has gone through since its launch in 2008 as part of MakerBot. Both were acquired by Stratasys in 2013, and this has lead to ups and downs in the relationship with Thingiverse’s user base.

MyMiniFactory was launched in 2013 as a similar kind of 3D printing object-sharing platform as Thingiverse, while also offering crowdsourcing and paid model options. In the MyMiniFactory blog post it’s stated that these features will not be added to Thingiverse, and that nothing should change for Thingiverse users in this regard.

What does change is its joining of the ‘SoulCrafted‘ initiative, which is an initiative against machine-generated content, including so-called ‘AI slop’. There will be a live Q & A on February 17th during which the community can pitch their questions and ideas, along with a dedicated Thingiverse group.

The Engineering Of The Falkirk Wheel

We live in an age where engineering marvels are commonplace: airplanes crisscross the sky, skyscrapers grow like weeds, and spacecraft reach for the stars. But every so often, we see something unusual that makes us take a second look. The Falkirk Wheel is a great example, and, even better, it is functional art, as well.

The Wheel links two canals in Scotland. Before you click away, here’s the kicker: One canal is 35 meters higher than the other. Before 1933, the canals were connected with 11 locks. It took nearly a day to operate the locks to get a boat from one canal to the other. In the 1930s, there wasn’t enough traffic to maintain the locks, and they tore them out.

Fast Forward

In the 1990s, a team of architects led by [Tony Kettle] proposed building a wheel to transfer boats between the two canals. The original model was made from [Tony’s] daughter’s Lego bricks.

The idea is simple. Build a 35-meter wheel with two cassions, 180 degrees apart. Each cassion can hold 250,000 liters of water. To move a boat, you fill the caissons with 500 tonnes of water. Then you let a boat into one of them with its weight displacing an equal amount of water, so the caissons stay at the same weight.

Once you have a balanced system, you just spin the wheel to make a half turn. There are 10 motors that require 22.5 kilowatts, and each half turn consumes about 1.5 kilowatt-hours.

Continue reading “The Engineering Of The Falkirk Wheel”

3D Printing Pneumatic Channels With Dual Materials For Soft Robots

Pneumatics are a common way to add some motion to soft robotic actuators, but adding it to a robot can be somewhat of a chore. A method demonstrated by [Jackson K. Wilt] et al. (press release, preprint) involves using a 3D printing to extrude two materials: one elastomeric material and a fugitive ink that is used to create pneumatic channels which are dissolved after printing, leaving the empty channels to be filled with air.

By printing these materials with a rational, multi-material (RM-3DP) custom nozzle it’s possible to create various channel patterns, controlling the effect of compressed air on the elastomeric material. This way structures like hinges and muscles can be created, which can then be combined into more complex designs. One demonstrated design involves a human-like hand with digits that can move and grasp, for example.

In the demonstration the elastomeric material is photopolymerizable polyurethane-acrylate resin, with the fugitive ink being 30 wt% Pluronic F-127 in water. The desired pattern is determined beforehand with a simulation, followed by the printing and UV curing of the elastomeric resin.

As is typical of soft robotics implementations, the resulting robots are more about a soft touch than a lot of force, but could make for interesting artificial muscle designs due to how customizable the printing process is.

Continue reading “3D Printing Pneumatic Channels With Dual Materials For Soft Robots”

Restoration Of Antique Clock With Unique Oscillator

The classic design of a mechanical clock generally consists of a display, a way to store energy, a way to release that energy at regular intervals, and a mechanism to transmit it where it needs to go. Most of us might be imagining a pendulum or a balance wheel, but there have been many other ways to maintain a reliable time standard with a physical object beyond these two common methods. This clock, for example, uses a rolling ball bearing as its time standard and [Tommy Jobson] discusses its operation in depth during a restoration.

The restoration of this clock, which [Tommy] theorizes was an amateur horological project even when it was new, starts by dismantling the clock nearly completely. The clock was quite dirty, so in addition to being thoroughly cleaned it also needed a bit of repair especially involving a few bent pins that stop the table’s rotation. These pins were replaced with stronger ones, and then everything in the clock’s movement was put back together. The tray carrying the ball bearing needed to be cleaned as well, and [Tommy] also added a lacquer to help preserve the original finish as long as possible. From there it was time to start calibrating the clock.

The ball bearing itself rolls back and forth along an inclined plane on a series of tracks. When it gets to the end it hits a lever which lets a bit of energy out of the movement, tilting the table back in the other direction to repeat the process. This is a much more involved process for getting an accurate time interval than a pendulum, so [Tommy] had a lot of work to do here. But in the end he was able to bring it back to life with an accuracy fairly close to a pendulum clock.

Ball bearings are a pretty popular medium for clock builds even in the modern era. This one uses them in a unique display, and a more recent version goes even further by using marbles to display digits directly.

Continue reading “Restoration Of Antique Clock With Unique Oscillator”

Argon ONE UP: Test-Tasting A Raspberry Pi CM5 Based Laptop

The Argon40 ONE UP unsurprisingly looks like a laptop. (Credit: Jeff Geerling)
The Argon40 ONE UP unsurprisingly looks like a laptop. (Credit: Jeff Geerling)

The Raspberry Pi Compute Module form factor is a tantalizing core for a potential laptop, with a CM5 module containing a fairly beefy SoC and RAM, with depending on the exact module also eMMC storage and WiFi. To turn this into a laptop you need a PCB to put the CM5 module on and slide it into a laptop shell. This is in effect what [Argon40] did with their crowdfunded ONE UP laptop, which [Jeff Geerling] has been tinkering with for a few weeks now, with some thoughts on how practical the concept of a CM5-based laptop is.

Most practical is probably the DIY option that [Jeff] opted for with the ‘Shell’ version that he bought, as that meant that he could pop in one of the CM5s that he had lying around. The resulting device is totally functional as a laptop, with all the Raspberry Pi 5 levels of performance you’d expect and with the repair-friendliness of a Framework laptop.

If you’re buying the Core version with the 8 GB CM5 module and 256 GB NVMe SSD included, you’re looking at €475 before shipping or the equivalent in your local currency. This puts it unfortunately in the territory of budget x86 laptops and used Apple MacBooks, even before taking into account the current AI-induced RAMpocalypse that’d push [Jeff]’s configuration to $600 if purchased new, with prices likely to only go up.

Even if this price isn’t a concern, and you just want to have a CM5-based laptop, [Jeff]’s experience got soured on poor customer support from [Argon40] and above all the Raspberry Pi’s arch nemesis: the inability to do sleep mode. With the lid closed it runs at 3.3 W idle, but that’ll run down the battery from 100% to flat in about 17 hours. Perhaps if Raspberry Pi added sleep states to their systems would it make for a good laptop core, as well as for a smartphone.

Continue reading “Argon ONE UP: Test-Tasting A Raspberry Pi CM5 Based Laptop”

Does This Electron Make Me Look Fat? Weighing An Electron

[The Signal Path] shows us how to recreate a classic science experiment to measure the weight of an electron. Things are easier for us, because unlike [J. J. Thomson] in 1897, we have ready sources of electrons and measuring equipment. Check it out in the video below.

The main idea is to trap an electron using a magnetic field into a circular path. You can then compute the forces required to keep it in that circle, along with some other equations, and combine them. The result lets you compute the charge to mass ratio using parameters you can either control or measure, like the radius of the circular path and the electric field.

Helmholtz coils create the magnetic field, and a cold cathode tube provides the electrons. Honestly, the equipment looks a bit like something out of an old monster movie.

Continue reading “Does This Electron Make Me Look Fat? Weighing An Electron”