Radiation patterns for antennas can be utterly confusing, especially when presented in two dimensions, as they usually are. Fear not, [Hunter] has your back with 3D printed and color-coded radiation patterns.
In the field of antenna design, radiation patterns denote the relationship between the relative strength of radio waves emitted from antennas and the position of a receiver/transmitter in 3D space. In practice, probes can be used to transmit/receive from documented locations around an antenna while recording signal intensity, allowing researchers and engineers to determine the characteristics of arcane antennas. These measurements are normally expressed as two-dimensional slices of three-dimensional planes. Naturally, this sometimes (often) complex geometry is difficult for all but the most spatially inclined to mentally conceptualize with only the assistance of a 2D drawing. With computers came 3D models, but [Hunter] wasn’t satisfied with a model on a screen: they wanted something they could hold in their hands.
To that end, [Hunter] simulated several different antenna structures, cleaned up the models for 3D printing, and 3D printed them in color sandstone, and the end result is beautiful. By printing in colored sandstone through Shapeways, [Hunter] now has roughly walnut-sized color-coded radiation patterns they can hold in their hand. To save others the work, [Hunter] has posted his designs on Shapeways at Ye Olde Engineering Shoppe. So far, he has a horn antenna, dipole, inset fed patch antenna and a higher order mode of a patch antenna, all of which are under 15.00USD. Don’t see the antenna radiation pattern of your dreams? Fret not, [Hunter] is looking for requests, so post your ideas down in the comments!
Further, beyond the immediate cool factor, we can see many legitimate uses for [Hunter’s] models, especially in education. With more and more research promoting structural rather than procedural learning, [Hunter’s] designs could easily become a pedagogical mainstay of antenna theory classes in the future. [Hunter] is not the only one making the invisible visible, [Charles] is mapping WiFi signals in three dimensions.
Video after the break.